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Early Universe:
Hot, dense 
Plasma of tightly coupled 
photons and ions
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Recombination:
CMB released 
Universe becomes neutral
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Dark Ages and Cosmic Dawn:
Hydrogen atoms clump together 
First stars and galaxies form
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Alvarez et al. (2009)
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Hydrogen is everywhere, and the 
21cm line allows us to trace hydrogen

Emit radio wave with 

 21cm wavelength

Absorb radio wave with 

 21cm wavelength



Bi
g 

Ba
ng

To
da

y

Hot, ionized 
early Universe D

ar
k 

Ag
es

C
os

m
ic

 D
aw

n

Re
io

ni
za

tio
n

Re
co

m
bi

na
tio

n 
(C

M
B)

Time



Bi
g 

Ba
ng

To
da

y

Hot, ionized 
early Universe D

ar
k 

Ag
es

C
os

m
ic

 D
aw

n

Re
io

ni
za

tio
n

Re
co

m
bi

na
tio

n 
(C

M
B)

Distance



“r=
ct

”

Us
H



Hydrogen 
atom

CMB

CMB



CMB

CMB



CMB

CMB



CMB

CMB
Depth perception comes from 

measuring the observed wavelength



21cm cosmology will allow gaps in the cosmic 
timeline to be filled by directly observing radio 
absorption or emission from hydrogen atoms



Current generation experiments are 
targeting the Epoch of Reionization (EoR)



time ~0.3 Gyr~1.0 Gyr
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Take-home messages
• We’re getting close to detecting the 21cm signal—close 

enough to start improving our understanding of reionization. 

• 21cm cosmology is a data-intensive science where 
astrophysics and cosmology go hand-in-hand 

• The HERA experiment is being built now, and promises to 
deliver qualitatively new constraints on astrophysics and 
cosmology. 

• 21cm cosmology provides a window into fundamental 
physics with opportunities to push the time, sensitivity, and 
scale frontiers.



The promise of 21cm 
measurements



Hydrogen Epoch of Reionization Array (HERA)

154 m



1

H ERA





21cmFAST, Mesinger et al.
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HERA will make a high significance 
measurement within ~5 years
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• Tvir: minimum virial temperature (proxy 
for mass) of first ionizing galaxies



• ζ: ionizing efficiency of first galaxies 

• Tvir: minimum virial temperature (proxy 
for mass) of first ionizing galaxies 

• Rmfp: mean free path of ionizing photons

A three-parameter reionization model



The recently commenced 
HERA experiment is 
forecasted to deliver 

~5% errors on 
astrophysical parameters 

AL & Parsons (2015b)
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AL & Parsons (2015) 
Presley, AL et al. (ongoing)

time ~0.3 Gyr~1.0 Gyr



Questions we can now 
begin to ask

• How and when was the IGM heated? 

• Were there any exotic mechanisms at play? 

• What was the nature of the first stars and galaxies? 

• Were galaxies solely responsible for reionization?



PAPER: state-of-the-art 
upper limits on the power 

spectrum



Donald C. Backer Precision 
Array for Probing the Epoch of 

Reionization (PAPER)







Upper limits for 7.5 < z < 8.5

~10 mK2 (Theory)



1010 mK2 (Pober et al 2013)

Leaving all contaminants in PAPER data

~10 mK2 (Theory)
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1010 mK2 (Pober et al 2013)

490,000 mK2 (Dillon, AL et al 2014) 

60,000 mK2 (Paciga et al 2013) 

1,700 mK2 (Parsons, AL et al 2014)

500 mK2 (Ali, … , AL et al 2015)

“Software telescopes” 
• Principal Component Analysis contamination 

mitigation (AL & Tegmark 2012, Switzer & AL 2014) 
• Time-domain filtering (Parsons, AL et al. 2015) 
• “Identical baseline calibration” (AL et al. 2010) 
• Decorrelation techniques (AL et al. 2014b) 
• Optimal estimators for 21cm cosmology 

(AL & Tegmark 2011; AL et al. 2014a)

Upper limits for 7.5 < z < 8.5
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1010 mK2 (Pober et al 2013)

490,000 mK2 (Dillon, AL et al 2014) 

60,000 mK2 (Paciga et al 2013) 

1,700 mK2 (Parsons, AL et al 2014)

500 mK2 (Ali, … , AL et al 2015)
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Current PAPER upper limits rule out 
the possibility of an extremely cold 
intergalactic medium at t = 0.6 Gyr 

(z ~ 8.4)
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Cold hydrogen 
gas

Warm 
hydrogen gas

BIG 
contrast, 

large signal

(Relatively) 
hot CMB

(Relatively) 
hot CMB Small contrast, small signal



If the intergalactic medium had cooled 
adiabatically, the hydrogen gas would 

be cold enough to produce a large 
signal—large enough to be seen by 

now, with PAPER’s sensitivity



If the intergalactic medium had cooled 
adiabatically, the hydrogen gas would 

be cold enough to produce a large 
signal—large enough to be seen by 

now, with PAPER’s sensitivity

Some mechanism must have 
heated up the gas



For neutral fractions between 30% and 
70%, PAPER observations imply Tgas > 10 K 

In contrast, Tgas = 1.18 K assuming 
adiabatic cooling 

Thus, some sort of reheating must’ve taken 
place 

Pober, Ali, …, AL et al. 2015, 
ApJ 809, 62



What about 
cosmology?



Astrophysics and 
cosmology are 

intertwined!



As we probe larger and larger portions of 
our Universe, theoretical models will 

inevitably have to incorporate cosmology

HERA 
V~100 Gpc3



Cosmo params fixed 
Cosmo params varied
AL & Parsons (2016)
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As we probe larger and larger portions of 
our Universe, theoretical models will 

inevitably have to incorporate cosmology



•           Baryon density 
•           Matter density 
•           Density fluctuation amplitude 
•           Hubble expansion 
•           Spectral index of density perturbations 
•           Minimum virial temperature of first galaxies 
•           Mean free path of ionizing photons 
•           UV ionizing efficiency 
•           X-ray ionizing efficiency 
•           X-ray photon cut-off 
•           X-ray spectral index

There are lots of parameters to 
vary in models of Cosmic Dawn
⌦b
⌦m
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How do we adequately explore 
the parameter space when 

there are so many parameters?
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may still talk O(a day) 

to evaluate, and O(104) 
may be required
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Solution: emulate the theoretical model
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Solution: emulate the theoretical model
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Interpolate over the 
results from pre-computed 

training samples



Case study: A fast 
emulator of semi-numeric 

cosmic dawn codes to 
allow MCMCs over a large 

number of parameters 

PYCAPE: PYthon toolbox for 
Cosmic dAwn Parameter Estimation

Kern, AL et al. (2017)



Sampling N points along each of 
M axes requires NM runs of a 

simulation. For N=10 points and 
M=11 parameters, this would 

require 1011
 s ~3000 years even if 

each simulation took just a single 
second! 

How do we sample the space 
efficiently and robustly?
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How should we 
perform the fit?



How do we do the fit?
• Higher order polynomial
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How do we do the fit?
• Higher order polynomial 

• Gaussian Process fitting
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• Higher order polynomial 

• Gaussian Process fitting: model every point along 
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dimensional Gaussian



How do we do the fit?
• Higher order polynomial 

• Gaussian Process fitting: model every point along 
the curve as being drawn from an infinite-
dimensional Gaussian…with (optionally) a 
covariance trained from the data.



Power spectrum recovery 
with Gaussian Processes

Cross-validation samples

Regression fit

Error regions



Error bars now take into account the 
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Error bars now take into account the 
limitations of one’s emulator, with errors 

naturally inflating away from training region



Parameter fits 
now span an 11-

dimensional 
space including 

both astrophysics 
and cosmology
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Emulator software coming soon!
• Gaussian process regression with full error 

propagation 

• Karhunen-Loève mode data compression 

• Corner-cutting 

• Latin Hypercube sampling 

• Incorporation of emulator error into likelihood 
calculation

Kern, AL et al. (in prep.)



Hydrogen Epoch of Reionization Array 
(HERA) targeting 6 < z < 25

~0.2 Tb (after compression) per day of observing



Planck satellite: maps at 9 frequencies 
with ~several arcmin resolution 



…

HERA: 
roughly the 
same 
resolution, 
but with 
~2000 
frequencies



Doing better cosmology 
through astrophysics



Reionization is a nuisance 
for CMB measurements

CMB



CMB

Reionization is a nuisance 
for CMB measurements

Extra optical depth parameter:





Scattering Reduces amplitude of 
density fluctuations



• Early reionization (higher optical depth)  
+ Large primordial fluctuations As  

vs 
• Late reionization (lower optical depth)  

+ Small primordial fluctuations As

CMB



Understanding reionization (especially the 
CMB optical depth) can improve constraints 

on other cosmological parameters

• Early reionization (higher optical depth)  
+ Large primordial fluctuations As 

vs 
• Late reionization (lower optical depth)  

+ Small primordial fluctuations As
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HERA provides us with exactly what we need



21cm information breaks the degeneracy 
between the amplitude of fluctuations and 

the optical depth
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Futuristic cosmology experiments 
targeting the neutrino mass also benefit

• Neutrinos free-stream out of over-densities and 
dampen structure formation

Without 
neutrinos

Agarwal & 
Feldman 2011
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Feldman 2011

Futuristic cosmology experiments 
targeting the neutrino mass also benefit



Both the neutrino mass and the optical depth 
can affect the observed amount of small 
scale structure, leading to degeneracies
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Both the neutrino mass and the optical depth 
can affect the observed amount of small 
scale structure, leading to degeneracies



Extremely small scale modes may be accessible 
to futuristic 21cm cosmology experiments

Park et al. 2014
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Heating from DM annihilation
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Heating from DM annihilation
Increased heating 

from DM
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Conventional heating 
sources are more localized



Conventional heating 
sources are more localized



Heating from dark matter annihilations 
would be more uniform, reducing the 

fluctuation amplitude
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• Time frontier 

• Unique access to the pre-reionization 
epochs 

• Sensitivity frontier 

• Large volume resolution in small errors 

• Scale frontier 

• Small scale modes are easy to model 
using linear theory 

Tegmark & Zaldarriaga 2009



Exciting times are ahead!
• We’re getting close to detecting the 21cm signal—close 

enough to start improving our understanding of reionization. 

• 21cm cosmology is a data-intensive science where 
astrophysics and cosmology go hand-in-hand 

• The HERA experiment is being built now, and promises to 
deliver qualitatively new constraints on astrophysics and 
cosmology. 

• 21cm cosmology provides a window into fundamental 
physics with opportunities to push the time, sensitivity, and 
scale frontiers.


