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Why Supersymmetry?
Gauge Hierarchy Problem 

Gauge Coupling Unification 

Stabilization of the Electroweak Vacuum 

Radiative Electroweak Symmetry Breaking 

Dark Matter 

Improvement to low energy phenomenology?

but, mh ~ 125 GeV, and no SUSY?



Gauge Hierarchy Problem

Scalar masses corrected by loops	
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Figure 2: 1-loop corrections to a scalar mass.

For a Planck scale correction, this cancellation must be accurate to 32 significant digits.
Even so, the 2-loop corrections should be of order α2Λ2 so these too must be accurately
canceled. Although such a series of cancellations is technically feasible, there is hardly a
sense of satisfaction that the hierarchy problem is under control.

An alternative and by far simpler solution to this problem exists if one postulates that
there are new particles with similar masses and equal couplings to those responsible for the
radiatively induced masses but with a difference (by a half unit) in spin. Then, because
the contribution to δm2

H due to a fermion loop comes with a relative minus sign, the total
contribution to the 1-loop corrected mass2 is

δm2
H ≃ O(

α

4π
)(Λ2 + m2

B) − O(
α

4π
)(Λ2 + m2

F ) = O(
α

4π
)(m2

B − m2
F ) (17)

If in addition, the bosons and fermions all have the same masses, then the radiative correc-
tions vanish identically. The stability of the hierarchy only requires that the weak scale is
preserved so that we need only require that

|m2
B − m2

F | <∼ 1 TeV2 (18)

As we will see in the lectures that follow, supersymmetry offers just the framework for
including the necessary new particles and the absence of these dangerous radiative corrections
[6].

Before we embark, I would like to call attention to some excellent additional resources on
supersymmetry. These are the classic by Bagger and Wess on supersymmetry, [7], the book
by Ross on Grand Unification [8] and two recent reviews by Martin [9] and Ellis [10].

1.3 Supersymmetric operators and transformations

Prior to the introduction of supersymmetry, operators were generally regarded as bosonic.
That is, they were either scalar, vector, or tensor operators. The momentum operator, Pµ, is
a common example of a vector operator. However, the types of bosonic charges are greatly
limited, as was shown by Coleman and Mandula [11]. Given a tensorial operator, Σµν , its
diagonal matrix elements can be decomposed as

< a|Σµν |a >= αpa
µp

a
ν + βgµν (19)

One can easily see that unless α = 0, 2 to 2 scattering process allow only forward scattering.
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GUTS !
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GUTS

Degrassi et al. 
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Figure 1: Left: SM RG evolution of the gauge couplings g1 =
p

5/3g0, g2 = g, g3 = gs, of the
top and bottom Yukawa couplings (yt, yb), and of the Higgs quartic coupling �. All couplings are
defined in the MS scheme. The thickness indicates the ±1� uncertainty. Right: RG evolution of
� varying Mt, Mh and ↵s by ±3�.

the Yukawa sector and can be considered the first complete NNLO evaluation of ��(µ).

We stress that both these two-loop terms are needed to match the sizable two-loop scale

dependence of � around the weak scale, caused by the �32y4t g
2
s + 30y6t terms in its beta

function. As a result of this improved determination of ��(µ), we are able to obtain a

significant reduction of the theoretical error on Mh compared to previous works.

Putting all the NNLO ingredients together, we estimate an overall theory error on Mh of

±1.0GeV (see section 3). Our final results for the condition of absolute stability up to the

Planck scale is

Mh [GeV] > 129.4 + 1.4

✓

Mt [GeV]� 173.1

0.7

◆

� 0.5

✓

↵s(MZ)� 0.1184

0.0007

◆

± 1.0th . (2)

Combining in quadrature the theoretical uncertainty with the experimental errors on Mt and

↵s we get

Mh > 129.4± 1.8 GeV. (3)

From this result we conclude that vacuum stability of the SM up to the Planck scale is

excluded at 2� (98% C.L. one sided) for Mh < 126GeV.

Although the central values of Higgs and top masses do not favor a scenario with a

vanishing Higgs self coupling at the Planck scale (MPl) — a possibility originally proposed
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Also for free: radiatively induced symmetry breaking



What is the MSSM

1) Add minimal number of new particles:  
Partners for all SM particles + 1 extra Higgs 

EW doublet.	
!

2) Add minimal number of new interactions: 
Impose R-parity to eliminate many 

UNWANTED interactions.	
!

R = (-1)3B+L+2S



CMSSM Boundary Conditions



CMSSM Boundary Conditions
Gaugino mass Unification

contain first derivatives of fields, we have

∂µ

(
∂LMSSM

∂ (∂µΦi)
δΦi

)
= ∂µ

(
∂Lsusy

∂ (∂µΦi)
δΦi

)
= ∂µ [Sµ

MSSM + Kµ] (20)

where we recall that ∂µ Kµ is the variation of Lsusy under an infinitesimal supersymmetry
transformation. Therefore

∂µKµ = δLsusy = δLMSSM − δLsoft = δLMSSM −
∂Lsoft

∂Φi
δΦi. (21)

Inserting this equation in eq. (20), and the resulting expression in eq. (19), we obtain

δLMSSM =

[
∂LMSSM

∂Φi
− ∂µ

∂LMSSM

∂ (∂µΦi)

]
δΦi + ∂µ Sµ

MSSM + δLMSSM −
∂Lsoft

∂Φi
δΦi, (22)

or

∂µ Sµ
MSSM =

{
∂Lsoft

∂Φi
−

[
∂LMSSM

∂Φi
− ∂µ

∂LMSSM

∂ (∂µΦi)

]}
δΦi (23)

Inserting this expression in eq. (17), we rewrite the interaction lagrangian between the
MSSM and the light gravitino as

Lint, eff =
i√

3 m3/2 MP

χ̄

{
∂Lsoft

∂Φi
−

[
∂LMSSM

∂Φi
− ∂µ

∂LMSSM

∂ (∂µΦi)

]}
δΦi + h. c. (24)

As we prove in Appendix B, the part in square parenthesis does not contribute to the
amplitudes of physical processes having one light gravitino in the initial or final state (in
short, one can take the on shell expression for ∂µ Sµ

MSSM, since the term in square parenthesis
vanishes on shell; notice that the procedure just outlined provides the on-shell expression
of ∂µ Sµ

MSSM without the need to explicitly work out the equations of motion of the fields
entering in the supercurrent). Namely:

Lint, eff =
i√

3m3/2 MP

χ̄
∂Lsoft

∂Φi
δΦi + h. c. (25)

This is the effective theory for the MSSM-light gravitino interaction in non-derivative form.
To get an explicit expression, we recall the MSSM superpotential and soft supersymmetry
breaking Lagrangian:

W = huH2Quc + hdH1Qdc + heH1Lec + µH2H1 (26)

Lsoft = −
1

2
Mαλαλα − m2

ijφ
i∗φj (27)

−AuhuH2Quc − AdhdH1Qdc − AeheH1Lec − BµH2H1 + h.c.

where generation indices on the matter fields have been supressed. From this, we find

iLint, eff =
i m2

ij√
3MP m3/2

(
χ̄ χi

L φ∗j − χ̄i
L χ φj

)
−

i√
3MP m3/2

[
AjWj,i χ̄ χi

L − (AjWj,i)
∗ χ̄i

L χ
]

−
Mα

4
√

6MP m3/2

F (α)a
µν χ̄ [γµ, γν ] λ(α)a −

i gα Mα√
6MP m3/2

(
φ∗i T a

ij φj
)
χ̄ γ5 λ(α)a (28)
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CMSSM Boundary Conditions
Gaugino mass Unification

A-term Unification
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CMSSM Boundary Conditions
Gaugino mass Unification

A-term Unification

Scalar mass unification 
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Scalar mass unification 
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CMSSM Spectra 
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rich spectrum 
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MSSM and R-Parity 
Stable DM candidate	

1) Neutralinos	
!
!
!
2) Sneutrino	
         Excluded (unless add L-violating terms)	
!
3) Other:	
        Axinos, Gravitinos, etc	

�i = ↵i
eB + �i

fW + �i
fH1 + �i

fH2

SUSY Dark MatterSUSY Dark Matter
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MCMC technique to sample efficiently the 
SUSY parameter space, and thereby 
construct the χ2 probability function 

Combines SoftSusy, FeynHiggs, SuperFla, 
SuperIso, MicrOmegas, and SSARD 

Purely frequentist approach (no priors) and 
relies only on the value of χ2  at the point 
sampled and not on the distribution of 
sampled points. 

400 million points sampled

Mastercode - MCMC

Bagnaschi, Buchmueller, Cavanaugh, Citron, Colling, De 
Roeck, Dolan, Ellis, Flacher, Heinemeyer, Isidori, Malik, 
Marrouche, Nakach, Olive, Paradisi,  Rogerson, Ronga,  
Sakurai, Martinez Santos, de Vries, Weiglein	

Long list of observables to	
constrain CMSSM parameter space

O. Buchmueller et al.: Likelihood Functions for Supersymmetric Observables in Analyses of the CMSSM and NUHM1 3

in Section 6.1 the implications of removing the (g − 2)µ

constraint. We also discuss the predictions of our fits for
BR(b → sγ), Ωχh2 and Mh, presenting the likelihood
functions for each of these observables without their own
contributions. None of these observables exhibits any sig-
nificant tension with the others.

2 Description of the Frequentist Statistical
Method Employed

We define a global χ2 likelihood function, which combines
all theoretical predictions with experimental constraints:

χ2 =
N

∑

i

(Ci − Pi)2

σ(Ci)2 + σ(Pi)2

+ χ2(Mh) + χ2(BR(Bs → µµ))

+ χ2(SUSY search limits)

+
M
∑

i

(fobs
SMi

− ffit
SMi

)2

σ(fSMi
)2

(1)

Here N is the number of observables studied, Ci repre-
sents an experimentally measured value (constraint) and
each Pi defines a prediction for the corresponding con-
straint that depends on the supersymmetric parameters.
The experimental uncertainty, σ(Ci), of each measure-
ment is taken to be both statistically and systematically
independent of the corresponding theoretical uncertainty,
σ(Pi), in its prediction. We denote by χ2(Mh) and
χ2(BR(Bs → µµ)) the χ2 contributions from the two mea-
surements for which only one-sided bounds are available
so far, as discussed below. Furthermore we include the
lower limits from the direct searches for SUSY particles
at LEP [64] as one-sided limits, denoted by “χ2(SUSY
search limits)” in eq. (1).

We stress that, as in [4,53], the three standard model
parameters fSM = {∆αhad, mt, MZ} are included as fit
parameters and allowed to vary with their current exper-
imental resolutions σ(fSM). We do not include αs as a fit
parameter, which would have only a minor impact on the
analysis.

Formulating the fit in this fashion has the advantage
that the χ2 probability, P (χ2, Ndof), properly accounts
for the number of degrees of freedom, Ndof , in the fit and
thus represents a quantitative and meaningful measure for
the “goodness-of-fit.” In previous studies [53], P (χ2, Ndof)
has been verified to have a flat distribution, thus yielding
a reliable estimate of the confidence level for any par-
ticular point in parameter space. Further, an important
aspect of the formulation is that all model parameters
are varied simultaneously in the MCMC sampling, and
care is exercised to fully explore the multi-dimensional
space, including possible interdependencies between pa-
rameters. All confidence levels for selected model param-
eters are performed by scanning over the desired parame-
ters while minimizing the χ2 function with respect to all

other model parameters. That is, in order to determine
the function χ2(x) for some model parameter x, all the
remaining free parameters are set to values corresponding
to a new χ2 minimum determined for fixed x. The function
values where χ2(x) is found to be equal to χ2

min +∆χ2 de-
termine the confidence level contour. For two-dimensional
parameter scans we use ∆χ2 = 2.28(5.99) to determine
the 68%(95%) confidence level contours.

Only experimental constraints are imposed when de-
riving confidence level contours, without any arbitrary
or direct constraints placed on model parameters them-
selves.3 This leads to robust and statistically meaning-
ful estimates of the total 68% and 95% confidence levels,
which may be composed of multiple separated contours.
Finally, the sensitivity of the global fit to different con-
straint scenarios can be studied by removing one of the
experimental constraints or by rescaling one of the exper-
imental uncertainties, as discussed in Sect. 3 in [4]. Stud-
ies of such scenarios are particularly helpful in identifying
which experimental data are most useful in constraining
the theoretical model and hence in precisely studying how
hyper-volumes in parameter space become more tightly
constrained (either now or in the future).

Since each new scenario in which a parameter is re-
moved or an uncertainty re-scaled represents, fundamen-
tally, a new χ2 function which must be minimized, mul-
tiple re-samplings of the full multi-dimensional param-
eter space are, in principle, required to determine the
most probable fit regions for each scenario. However, these
would be computationally too expensive. To avoid this dif-
ficulty, we exploit the fact that independent χ2 functions
are additive and result in a well defined χ2 probability.
Hence, we define “loose” χ2 functions, χ2

loose, in which the
term representing some constraint, e.g., ΩCDM, is removed
from the global χ2 function. The χ2

loose function represents
the likelihood that a particular set of model parameter val-
ues is compatible with a sub-set of the experimental data
constraints, without any experimental knowledge of the
removed constraint.

An exhaustive, and computationally expensive, 25 mil-
lion point pre-sampling of the χ2

loose function is then per-
formed in the full multi-dimensional model parameter
space using a MCMC. Constraint terms representing the
various experimental scenarios are then re-instated or re-
moved to form different χ2 functions, one for each scenario
studied. If the scenario requires an additional constraint
to be removed from the χ2

loose function, the density of
points pre-sampled for the χ2

loose function was carefully
tested and verified to also be an unbiased and sufficiently
complete sampling of the studied model parameter space
for the full χ2 function by using dedicated MCMC sam-
ples of approximately one million sampling points each,
where the particular constraint in question was removed.

3 For reasons of stability of higher-order contributions, we
limit the range of tanβ to values below tanβ = 60. As ex-
plained in Section 3 below, we furthermore impose a cut on
parameter regions where the higher-order corrections relating
the running mass to the on-shell mass of the pseudo-scalar
Higgs boson get unacceptably large.

Multinest
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Effect of Results from LHC
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by using the signal region with the best expected sensitivity at each point. The blue dashed lines show the
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and background-only theory uncertainties. Observed limits are indicated by medium dark (maroon) curves,

where the solid contour represents the nominal limit, and the dotted lines are obtained by varying the signal
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Gluino mass [GeV]
800 1000 1200 1400 1600 1800 2000 2200 2400

Sq
ua

rk
 m

as
s 

[G
eV

]

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800
Squark-gluino-neutralino model

=8 TeVs, -1 L dt = 20.3 fb∫
0-lepton, 2-6jets

ATLAS  

)expσ1 ±)=0 GeV Exp. limit (
1
0
χ∼m(

)theory
SUSYσ1 ±)=0 GeV Obs. limit (

1
0
χ∼m(

)=395 GeV Exp. limit
1
0
χ∼m(

)=395 GeV Obs. limit
1
0
χ∼m(

)=695 GeV Exp. limit
1
0
χ∼m(

)=695 GeV Obs. limit
1
0
χ∼m(

)=0 GeV Obs.
1
0
χ∼) m(-17TeV (4.7fb

Figure 9. Exclusion limits for a simplified phenomenological MSSM scenario with only strong production

of gluinos and first- and second-generation squarks (of common mass), with direct decays to quarks and

lightest neutralinos. Three values of the lightest neutralino mass are considered: mχ̃0
1
= 0, 395 GeV and

695 GeV. Exclusion limits are obtained by using the signal region with the best expected sensitivity at

each point. The dashed lines show the expected limits at 95% CL, with the light (yellow) band indicating

the 1σ experimental and background-only theory uncertainties on the mχ̃0
1
= 0 limit. Observed limits are

indicated by solid curves. The dotted lines represent the mχ̃0
1
= 0 observed limits obtained by varying the

signal cross-section by the renormalisation and factorisation scale and PDF uncertainties. Previous results

for mχ̃0
1
= 0 from ATLAS at 7 TeV [16] are represented by the shaded (light blue) area. Results at 7 TeV

are valid for squark or gluino masses below 2000 GeV, the mass range studied for that analysis.

– 24 –



m1/2 - m0 planes incl. LHC

CMSSM Ellis, Olive, Santoso, Spanos

100 1000 2000 3000
0

1000

1500

100 1000 2000 3000
0

1500

mh  = 114 GeV

m
0 (

G
eV

)

m1/2 (GeV)

tan ` = 55 ,  µ > 0

100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

700

800

100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

700

800

m
0 (

G
eV

)

m1/2 (GeV)

tan ` = 10 ,  µ > 0

mh  = 114 GeV
mr±��= 104 GeV

Atlas 0l 95%CL

CMS _T 95%CL

Atlas 1l 95%CL

mh  95% CL

CMS MET 95%CL



m1/2 - m0 planes incl. LHC

CMSSM Ellis, Olive, Santoso, Spanos

100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

700

800

100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

700

800

m
0 (

G
eV

)

m1/2 (GeV)

tan ` = 10 ,  µ > 0

mh  = 114 GeV

Atlas 0l 95%CL

mh  95% CL

CMS MHT 95%CL

Atlas 2011 95%CL (PCL)

Atlas 2011 95%CL (CLs)

100 1000 2000 3000
0

1000

1500

100 1000 2000 3000
0

1500

mh  = 114 GeV

m
0 (

G
eV

)

m1/2 (GeV)

tan ` = 55 ,  µ > 0



m1/2 - m0 planes incl. LHC

CMSSM Ellis, Olive, Santoso, Spanos

100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

700

800

100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

700

800

m
0 (

G
eV

)

m1/2 (GeV)

tan ` = 10 ,  µ > 0

mh  = 114 GeV

LHC post EPS

100 1000 2000 3000
0

1000

1500

100 1000 2000 3000
0

1500

mh  = 114 GeV

m
0 (

G
eV

)

m1/2 (GeV)

tan ` = 55 ,  µ > 0

LHC post EPS



m1/2 - m0 planes incl. LHC

CMSSM Ellis, Olive, Santoso, Spanos

100 1000 2000 3000
0

1000

1500

100 1000 2000 3000
0

1500

m
0 (

G
eV

)

m1/2 (GeV)

tan ` = 55 ,  µ > 0

LHC 

mh  = 119 GeV

100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

700

800

100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

700

800

m
0 (

G
eV

)

m1/2 (GeV)

tan ` = 10 ,  µ > 0

mh  = 119 GeV

LHC



m1/2 - m0 planes incl. LHC

CMSSM Ellis, Olive, Santoso, Spanos

100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

700

800

100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

700

800

m
0 (

G
eV

)

m1/2 (GeV)

tan   = 10 , ƫ > 0

mh  = 114 GeV

LHC

117.5 GeV

119 GeV

100 1000 2000 3000
0

1000

1500

100 1000 2000 3000
0

1500

m
0 (

G
eV

)

m1/2 (GeV)

tan ` = 55 ,  ƫ > 0

LHC 

mh  = 119 GeV



m1/2 - m0 planes incl. LHC

CMSSM Ellis, Olive, Santoso, Spanos

100 1000 2000 3000
0

1000

1500

100 1000 2000 3000
0

1500

m
0 (

G
eV

)

m1/2 (GeV)

tan ` = 55 , ƫ > 0
LHC

mh  = 119 GeV

100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

700

800

100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

700

800

m
0 (

G
eV

)

m1/2 (GeV)

tan ` = 10 , ƫ > 0

mh  = 114 GeV LHC
117.5 GeV

119 GeV



Δχ2 map of m0 - m1/2 plane

CMSSM
Bagnaschi, Buchmueller, Cavanaugh, Citron, De Roeck, Dolan, 
Ellis, Flacher, Heinemeyer, Isidori, Malik, Martinez Santos, 
Olive, Sakurai, de Vries, Weiglein	

Mastercode

2015

Low mass  
spectrum  

still observable  
at LHC

14 TeV 3000 fb-1

8 TeV 20 fb-1



CMSSM
Bagnaschi, Buchmueller, Cavanaugh, Citron, De Roeck, Dolan, 
Ellis, Flacher, Heinemeyer, Isidori, Malik, Martinez Santos, 
Olive, Sakurai, de Vries, Weiglein	

Mastercode

2015

Elastic scaterring cross-section



CMSSM
Bagnaschi, Buchmueller, Cavanaugh, Citron, De Roeck, Dolan, 
Ellis, Flacher, Heinemeyer, Isidori, Malik, Martinez Santos, 
Olive, Sakurai, de Vries, Weiglein	

Mastercode

2015

Elastic scaterring cross-section

New LUX bound



CMSSM
Bagnaschi, Buchmueller, Cavanaugh, Citron, De Roeck, Dolan, 
Ellis, Flacher, Heinemeyer, Isidori, Malik, Martinez Santos, 
Olive, Sakurai, de Vries, Weiglein	

Mastercode

2015

Elastic scaterring cross-section

New LUX bound

+PandaX



The Strips:

Stau-coannhilation Strip 

extends only out to ~1 TeV 

Stop-coannihilation Strip 

Funnel 

associated with high tan β, problems with B → μμ 

Focus Point



Stop strip

!
100 TeV 3000 fb-1!
33 TeV 3000 fb-1!
14 TeV 3000 fb-1!

14 TeV 300 fb-1!

8 TeV 20 fb-1

1.0 3 5 7.0 9.0
0

10

 20

0.0
1

0.0
1

0.0
1

0.0
1

0.0
5

0.0
5

0.0
5

0.05

0.0
66

0.066

0.066

0.1

0.1

0.5

0.5
1

122
122

122

12
2

122

122

122

12
2

122
122

122122

122
122

122

122

123

123

123

123

12
3

123

123
123

123

123

123

123123

123
123

123

123

123
123

123

123

124

124

124 124

124

12
4

124

124

124

124

124

124

124
124

124

124124

124

124
124

124

124
124

124
125

12
5

125
125

125 125

125

125

12
5

12
5

125
125

125

125

12
5 125

125

125
125

125
125

12
6

126

12
6 126

126 126

126

126

126
126

126

126
12
6

126

126

126

126

126

126
126

126

126

126
126

126
127

127

127

127

127127

127

127

127 127

127

127
12
7

127
127

12
7

1271
27

127

127

127

127

127

127

127

127

127
128

128

128

128

128 128

128

128

128
128

128

128

128

128

128

128

128

128
128

128
128

128

128

128

128128

128

128
128

129

129

129 129

129 129

129 129

129

129 129

129

129

12
9

129

129

129

129

129

129

129

129
129

129

129
129

129

129
129

129

13
0

130

130

130

130 130

130

130
130

130

130 130

130
130130

130 130
130

130

130 130

130

130

130

130

130

130 130
130

130
130

130

130

130

130
130

130
130131

131

131

131

131
131

131

131

131

131

131
131

131

131
131

131

131 131

131

131 131

131

131
131

131131

131 131131 131 131

131 131 131 131

131

131
131 131

1.0 3.0 5.0 7.0 9.0

m 0
 (T

eV
)

m1/2 (TeV)

tan β  = 6, A0 = -4.2 m0, µ < 0

122

124

0.01
0.05

0.066

123
0.1

0.5

1.0
125

126

X

Ellis, Evans, Mustafayev, Nagata, Olive



0.0
1

0.01

0.01

0.01

0.01

0.01

0.0
5

0.05

0.0
5

0.05

0.0
5 0.05

0.05
0.05

0.066

0.066

0.066

0

0.066

0.0
66

0.1
0.1

0.1

0.1
0.1

12
2

12
2

12
2

12
2

122

122
122

122
122

122

122 122122

12
3

12
3

123

123
123

12
3

12
3

12
3

123
123

123
123

123

12
3

12
4

12
4

124
124

124
124

12
4

12
4

124

124
124

124 124
124

124

124

124

124
12
5

12
5

125
125

125
125

12
5

12
5

125

125
125

125

125
125

125

125

12
6

12
6

12
6 1

26
126

12
6

12
6

126

126

126
126

126

126126

126

12
7

12
7

127

12
7 127

127127

12
7

12
7

127

127

127

127
127

127127

127
7

128

128

12
8

128
128

128

128

12
8

12
8

128

128
128

128

12
8128

128128128

129

12
9

12
9

129
129129

129
129

129
129

12
9

12
9

129

129

129
129

129

129
129129

129

129

130

130

13
0

130

130

130130
130

13
0

130

130 130

130130

130

13
0130

130

130
130

130

131

131

13
1

131

131

131
131

131

131

131

131

131

131
131

131

131
131

131

131

131

131

1.0 3 5 7.0 9.0
0

10

 20

1.0 3.0 5.0 7.0 9.0

m 0
 (T

eV
)

m1/2 (TeV)

tan β  = 6, A0 = -3.5 m0, µ < 0

122

124

0.01

0.05

0.066

123

0.1

0.5

125

126

X

127128Min = 1017 GeV

Improved in an SU(5) superGUT extension

Ellis, Evans, Mustafayev, Nagata, Olive



Focus Point

Ellis, Evans, Mustafayev, Nagata, Olive

10 15
0

20

30

0.0
1

0.05

0.05

0.05

0.0
66

0.06
6

0.066

0.1

0.1

0.1

0.1

0.5

0.5

0.5

1
1

1

5

5

5

10

10

10

50 50

100

122

124124

124

124 124 124

125

125

125

125125 125
125

125

125

125 125

125

12
5

125

125125

125 125

126 126126
126 126

126

126
126126

126

126

126126

127
127127

127
127

127127

127 127
127

127127
127127

128
128128

128128
128128 128

128 128
128 128

128
129 129

129129
129

129
129129

129

129
129

129

129 129130
130130

130 130130
130

130
130131

131131
131

131

10

5

m 0
 (T

eV
)

m1/2 (TeV)

tan β  = 5, A0 = 0, µ > 0

122
124

0.01

0.05

0.066
123

0.1

0.5

125

126
!
100 TeV 3000 fb-1!
33 TeV 3000 fb-1!
14 TeV 3000 fb-1!

14 TeV 300 fb-1!

8 TeV 20 fb-1



Direct detectability
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Figure 3: The spin-independent elastic scattering cross section in the CMSSM as a function
of the neutralino mass for µ > 0, with tan � = 5 and A0 = 0 (left) and A0 = 2.3m0 (right).
The upper panels show points where the relic density is within 3� of the central Planck value
colored darker blue, and those where the relic density is below the Planck value as lighter blue
points. The lower panels show the same set of points colored according to the calculation of
the Higgs mass: 124–126 GeV (darkest), 123–124 and 126–127 GeV (lighter), 122–123 and
127–128 GeV (lightest). The black solid curve is the current LUX bound. The black dashed
curve is the projected LZ sensitivity and the dashed orange curve is the neutrino background
level.

value are colored darker green in the upper panels, and those where the relic density is below
the Planck value as lighter green points, and the other points and shadings are identical to
those in the previous two figures. Here the thick black solid curve is the upper limit from
PICO [101] and the thin curves are obtained from IceCube [102] limits based on annihilations
into bb̄ pairs (solid) or W+W� pairs (dashed). For the focus-point models, annihilations
proceed primarily into electroweak gauge bosons, or hZ final states with some non-negligible
contributions from tt̄, for which the W+W� may be applicable. Models with A0 = 0 lie just
below the current bounds again because of the highly-mixed nature of the LSP, whilst the
models with A0 = 2.3m0 predict cross section far below these bounds.
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Other Possibilities

Pure Gravity Mediation 

2 parameter model with very large scalar masses 

m0 = m3/2, tan β 

mAMSB 

similar to PGM, but allow m0 ≠ m3/2 

mSUGRA 

B0 = A0 - m0 ⇒ tan β no longer free 

!

More Constrained (fewer parameters)
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Other Possibilities

NUHM1,2:  m12 = m22 ≠ m02, m12 ≠ m22 ≠ m02 

μ and/or mA free 

NUGM 

gluino coannihilation 

subGUT models: Min < MGUT 

new parameter Min 

SuperGUT models: Min > MGUT  

requires SU(5) input couplings

Less Constrained (more parameters)



Ellis, Luo, Olive, Sandick;	
Ellis, Evans, Luo, Nagata, Olive, 
Sandick

NUHM1 models with μ free (m1 = m2)
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Direct detectability

Ellis,Evans, Nagata, Olive, 
Sandick, Zheng



Why Supersymmetry (still)?
Gauge Coupling Unification 

Gauge Hierarchy Problem 

Stabilization of the Electroweak Vacuum 

Radiative Electroweak Symmetry Breaking 

Dark Matter 

Improvement to low energy phenomenology?

but, mh ~ 125 GeV, and no SUSY?



SO(10) GUT?
Gauge Coupling Unification 

  

Stabilization of the Electroweak Vacuum 

Radiative Electroweak Symmetry Breaking 

Dark Matter 

Improvement to low energy phenomenology?

Neutrino masses…



What is SO(10)

SO(10) ⊃ SU(5) × U(1)	
	        ⊃ SU(4) × SU(2) × SU(2)	
	 	  ⊃ others

Gauge degrees of freedom: 45

45 = (15,1,1) + (6,2,2) + (1,1,0) + (1,3,1) + (1,1,3)

decomposition of the 45
45 = (24,0) + (10,4) + (10,-4) + (1,0)SU(5) × U(1):	

SU(4) × SU(2) × SU(2):	

(SU(4) decomposition in terms of SU(3): 15 = 8 + 3 + 3 + 1; 6 = 3 + 3)

_

_ _

Georgi	
Fritzsch,Minkowski



What is SO(10)

SO(10) ⊃ SU(5) × U(1)	
	        ⊃ SU(4) × SU(2) × SU(2)	
	 	  ⊃ others

Matter degrees of freedom: fundamental 16

16 = (4,1,2) + (4,2,1)

decomposition of the 16
16 = (10,-1) + (5,3) + (1,-5)SU(5) × U(1):	

SU(4) × SU(2) × SU(2):	

(SU(4) decomposition in terms of SU(3): 4 = 3 + 1

_

_

new: right-handed neutrino



What is SO(10)

SO(10) ⊃ SU(5) × U(1)	
	        ⊃ SU(4) × SU(2) × SU(2)	
	 	  ⊃ others

Higgs: see below



R1
Table 2: Candidates for the intermediate gauge group Gint.

Gint R1

SU(4)C ⌦ SU(2)L ⌦ SU(2)R 210

SU(4)C ⌦ SU(2)L ⌦ SU(2)R ⌦D 54

SU(4)C ⌦ SU(2)L ⌦ U(1)R 45

SU(3)C ⌦ SU(2)L ⌦ SU(2)R ⌦ U(1)B�L 45

SU(3)C ⌦ SU(2)L ⌦ SU(2)R ⌦ U(1)B�L ⌦D 210

SU(3)C ⌦ SU(2)L ⌦ U(1)R ⌦ U(1)B�L 45, 210

SU(5)⌦ U(1) 45, 210

Flipped SU(5)⌦ U(1) 45, 210

be contained in either a 45, 54, 126, or 210 representation.
Below the GUT scale, components in an SO(10) multiplet can obtain di↵erent masses.

We assume that only a part of an SO(10) multiplet which contains the DM candidate
and forms a representation under Gint has a mass much lighter than the GUT scale. We
denote this representation by RDM. Such a mass splitting can be realized by the Yukawa
coupling of the DM multiplet with the R1 Higgs field. After the R1 Higgs obtains a VEV,
the Yukawa coupling leads to an additional mass term for the SO(10) multiplet, which
gives di↵erent masses among the components. By carefully choosing the parameters in
the Lagrangian, we can make only RDM light. This will be discussed in detail in Sec. 4.

As will be seen in Sec. 3.1, without RDM, SO(10) GUTs often predict either a low value
of MGUT or Mint, which could be problematic for proton decay or the explanation of light
neutrino masses, respectively. In order to a↵ect the RGE running of the gauge couplings
and possibly increase the mass scales for both Mint and MGUT, the DM should be charged
under Gint. In Table 3, we summarize possible candidates for RDM for each intermediate
gauge group. Above the intermediate scale, all of the components have an identical
mass. In fact, it turns out that the degeneracy is not resolved at tree level even after
the intermediate gauge symmetry is broken. This is because the SO(10) multiplets which
contain RDM displayed in the table cannot have Yukawa couplings with the 126 Higgs;
such a coupling is forbidden by the SO(10) symmetry. Thus, the e↵ects of symmetry
breaking by the 126 Higgs VEV cannot be transmitted to the mass of the RDM multiplet
at tree level, and a simple realization of DM in RDM makes its components degenerate in
mass.

Such a degenerate mass spectrum is problematic. Since the degenerate multiplet
contains particles charged under the SU(3)C⌦U(1)EM gauge group, they will be in thermal
equilibrium. In general, these components have quite a long lifetime, and thus their
thermal relic density conflicts with various observations. To see this, let us consider the
(1,1,3) Dirac fermion multiplet ( 0, ±) in the SU(4)C ⌦SU(2)L⌦SU(2)R theory, which
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Recipe for constructing an SO(10) DM model
!
1. Pick an Intermediate Scale Gauge Group

2 Model

We begin with an overview of the basic SO(10) model needed to accommodate a DM
candidate. As mentioned above, in this work, we consider SO(10) GUT models and
restrict ourselves to a two step simultaneous symmetry breaking chain,1 in which the
SO(10) gauge group is broken to an intermediate gauge group G

int

at the GUT scale
M

GUT

, and subsequently broken to the SM gauge group G
SM

⌘ SU(3)C ⌦SU(2)L⌦U(1)Y
and a Z

2

symmetry at the intermediate scale M
int

:

SO(10) �! G
int

�! G
SM

⌦ Z
2

, (1)

The Higgs multiplets that break SO(10) and G
int

are labeled by R
1

and R
2

, respectively.
As discussed in the introduction, this Z

2

symmetry is a remnant of an extra U(1) symmetry
in SO(10) [5–8] and is used to stabilize DM candidates [9, 10]. A brief introduction to
the intermediate subgroups and Z

2

symmetry will be given in Sec. 2.1. Possible SO(10)
multiplets that contain an electric and color neutral component for a WIMP DM candidate
are summarized in Sec. 2.2. For a group theoretical argument on the classification of these
DM candidates, see Appendix A. Among them, those who have a non-zero hypercharge
are severely restricted by the DM direct search experiments. We consider this class of
DM candidates in Sec. 2.3 and discuss conditions for the DM models to evade the direct
search bound.

To keep our model concise, in the following discussion, we only consider SO(10) irre-
ducible representations with dimensions up to 210.

2.1 SO(10) GUT and discrete symmetry

We start by giving a brief description of the ingredients in our model. In an SO(10) unifi-
cation theory, a generation of SM fermions and a right-handed neutrino are embedded in a
16 chiral representation, while the SM Higgs boson usually lies in a 10 representation. To
obtain a realistic Yukawa sector, it is necessary to take the 10 to be complex [27,28]. We
will keep this sector unchanged in most of what follows. In addition to the SM particles,
the R

1

and R
2

Higgs representations are added to break SO(10) and G
int

, respectively.
The last ingredient of our model is the DMmultiplet, whose lightest component is targeted
to be the DM in the Universe. The stability of the DM is guaranteed by a remnant Z

2

symmetry of the extra U(1) gauge symmetry of SO(10) as we will discuss soon. Possible
representations for the DM multiplet are determined below. Here, we assume that only a
minimal set of the Higgs and DM multiplets which are necessary for the symmetry break-
ing and mass generation of DM lie in the low-energy regime and other components have
masses of the order of the symmetry breaking scale at which their masses are generated.
For example, among the 10 representation, only the electroweak doublet components
remains light to break the electroweak symmetry, while the other components have GUT-
scale masses. Also, to obtain the right relic abundance, the mass of the DM particle is

1For recent work on this kind of SO(10) scenario, see Ref. [26].
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2 Model

We begin with an overview of the basic SO(10) model needed to accommodate a DM
candidate. As mentioned above, in this work, we consider SO(10) GUT models and
restrict ourselves to a two step simultaneous symmetry breaking chain,1 in which the
SO(10) gauge group is broken to an intermediate gauge group G

int

at the GUT scale
M

GUT

, and subsequently broken to the SM gauge group G
SM

⌘ SU(3)C ⌦SU(2)L⌦U(1)Y
and a Z
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symmetry at the intermediate scale M
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The Higgs multiplets that break SO(10) and G
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are labeled by R
1

and R
2

, respectively.
As discussed in the introduction, this Z

2

symmetry is a remnant of an extra U(1) symmetry
in SO(10) [5–8] and is used to stabilize DM candidates [9, 10]. A brief introduction to
the intermediate subgroups and Z

2

symmetry will be given in Sec. 2.1. Possible SO(10)
multiplets that contain an electric and color neutral component for a WIMP DM candidate
are summarized in Sec. 2.2. For a group theoretical argument on the classification of these
DM candidates, see Appendix A. Among them, those who have a non-zero hypercharge
are severely restricted by the DM direct search experiments. We consider this class of
DM candidates in Sec. 2.3 and discuss conditions for the DM models to evade the direct
search bound.

To keep our model concise, in the following discussion, we only consider SO(10) irre-
ducible representations with dimensions up to 210.

2.1 SO(10) GUT and discrete symmetry

We start by giving a brief description of the ingredients in our model. In an SO(10) unifi-
cation theory, a generation of SM fermions and a right-handed neutrino are embedded in a
16 chiral representation, while the SM Higgs boson usually lies in a 10 representation. To
obtain a realistic Yukawa sector, it is necessary to take the 10 to be complex [27,28]. We
will keep this sector unchanged in most of what follows. In addition to the SM particles,
the R

1

and R
2

Higgs representations are added to break SO(10) and G
int

, respectively.
The last ingredient of our model is the DMmultiplet, whose lightest component is targeted
to be the DM in the Universe. The stability of the DM is guaranteed by a remnant Z

2

symmetry of the extra U(1) gauge symmetry of SO(10) as we will discuss soon. Possible
representations for the DM multiplet are determined below. Here, we assume that only a
minimal set of the Higgs and DM multiplets which are necessary for the symmetry break-
ing and mass generation of DM lie in the low-energy regime and other components have
masses of the order of the symmetry breaking scale at which their masses are generated.
For example, among the 10 representation, only the electroweak doublet components
remains light to break the electroweak symmetry, while the other components have GUT-
scale masses. Also, to obtain the right relic abundance, the mass of the DM particle is

1For recent work on this kind of SO(10) scenario, see Ref. [26].
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R1 R2 R2 = 126 + …
Neutrino see-saw: Majorana mass for νR 	
from 16 16 126 → mνR ~ Mint and mν ~ v2/Mint

Recipe for constructing an SO(10) DM model

!
1. Pick an Intermediate Scale Gauge Group!
!
2. Use 126 to break Gint to SM

Z2 related to matter parity and B-L

Unlike SUSY R-parity, this Z2 is not put in by hand!



Recipe for constructing an SO(10) DM model

!
1. Pick an Intermediate Scale Gauge Group!
!
2. Use 126 to break Gint to SM!
!
3. Pick DM representation and insure proper splitting !
within the multiplet, and pick low energy field content!
!
 



Table 2: List of SU(2)L ⌦ U(1)Y multiplets in SO(10) representations that contain an
electric neutral color singlet.

Model B � L SU(2)L Y SO(10) representations

F01

0

1 0 45, 54, 210

F
1/2
2 2 1/2 10, 120, 126, 2100

F03 3 0 45, 54, 210

F13 3 1 54

F
1/2
4 4 1/2 2100

F
3/2
4 4 3/2 2100

S01

1

1 0 16, 144

S
1/2
2 2 1/2 16, 144

S03 3 0 144

S13 3 1 144

bF01
2

1 0 126

bF1/22 2 1/2 210

bF13 3 1 126

of F01. The second example is based on SU(4)C ⌦ SU(2)L ⌦ SU(2)R ⌦D and consists of a
(15,1,1) originating from either a 45 or a 210 in SO(10). Since the 15 of SU(4)C carries
zero B � L charge, this is also an example of F01. All possible candidates associated with
bF01 were excluded in [24]. A fermion that is a singlet under the intermediate gauge group
can also be produced through the exchange of the GUT scale particles, and thus be a
DM candidate. For example, the case of the (1,1,1) component of a 210 is discussed in
Ref. [24], which is again an example of F01 DM.

The scalar singlet S01 and triplet S03 can interact with the SM Higgs boson e�ciently
through the quartic coupling and are potential good DM candidates to be discussed below.
These can be taken to be either real or complex. For S01, there is no di↵erence in any of
our results whether S01 is real or complex. We have taken S03 to be real, but there would
be no qualitative di↵erence in our results for complex S03. In addition, S03 couples to the
SM particles via the weak interaction. Similarly, the fermion triplet F03 is a wino-like
DM candidate and will also be considered below. In general, the neutral component of
a SU(2)L ⌦ U(1)Y multiplet can interact with SM particles through exchange of W or Z
boson, and thus can be a good DM candidate. Such DM candidates have been widely
studied in the literature [37–47].

There are also DM candidates which have non-zero hypercharge. These are: F1/22 , F13,

F
1/2
4 , F3/24 , S1/22 , S13, bF

1/2
2 , and bF13. These DM candidates are severely constrained by DM
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Recipe for constructing an SO(10) DM model

!
1. Pick an Intermediate Scale Gauge Group!
!
2. Use 126 to break Gint to SM!
!
3. Pick DM representation and insure proper splitting !
within the multiplet, and pick low energy field content!
!
 4. Use RGEs to obtain Gauge Coupling Unification



Recipe for constructing an SO(10) DM model
!
!
4. Use RGEs to obtain Gauge Coupling Unification

Table 6: NETDM models. Mint and MGUT are given in GeV. All of the values are
evaluated with the two-loop RGEs.

Model I Model II

Gint SU(4)C ⌦ SU(2)L ⌦ SU(2)R SU(4)C ⌦ SU(2)L ⌦ SU(2)R ⌦D

RDM (1,1,3)D in 45D (15,1,1)W in 45W

R1 210R 54R

R2 (10,1,3)C � (1,1,3)R (10,1,3)C � (10,3,1)C � (15,1,1)R

log10(Mint) 8.08(1) 13.664(5)

log10(MGUT) 15.645(7) 15.87(2)

gGUT 0.53055(3) 0.5675(2)

(a) Model I
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(b) Model II

Figure 4: Running of gauge couplings. Solid (dashed) lines show the case with (without)
DM and additional Higgs bosons. Blue, green, and red lines represent the running of the
U(1), SU(2) and SU(3) gauge couplings, respectively.

whether these models can give appropriate masses for light neutrinos. Next, in Sec. 5.2,
we evaluate proton lifetimes in each model and discuss the testability in future proton
decay experiments. Finally, we compute the abundance of DM produced by the NETDM
mechanism in Sec. 5.3, and predict the reheating temperature after inflation.

19

Fixes MGUT, Mint, αGUT



Examples: 
Scalars

Table 3: Summary of DM multiplets. The second column shows the Gint representation
with quantum numbers listed in the same order as the groups shown in the direct product.
The case of G

int

= SU(4)C⌦SU(2)L⌦SU(2)R⌦D (SU(3)C⌦SU(2)L⌦SU(2)R⌦U(1)B�L⌦
D) is identical to that of G

int

= SU(4)C ⌦SU(2)L⌦SU(2)R (SU(3)C ⌦SU(2)L⌦SU(2)R⌦
U(1)B�L) with additional multiplets required by left-right symmetry introduced above the
intermediate scale.

Model R
DM

SYn SO(10) representation

G
int

= SU(4)C ⌦ SU(2)L ⌦ SU(2)R(⌦D)

SA422(D) 4,1,2 S01 16, 144

SB422(D) 4,2,1 S
1/2
2 16, 144

SC422(D) 4,2,3 S
1/2
2 144

SD422(D) 4,3,2 S13 144

SE422(D) 4,3,2 S03 144

G
int

= SU(4)C ⌦ SU(2)L ⌦ U(1)R

SA421 4,1,�1/2 S01 16, 144

SB421 4,2, 0 S
1/2
2 16, 144

SC421 4,2, 1 S
1/2
2 144

SD421 4,3, 1/2 S13 144

SE421 4,3,�1/2 S03 144

G
int

= SU(3)C ⌦ SU(2)L ⌦ SU(2)R ⌦ U(1)B�L(⌦D)

SA3221(D) 1,1,2, 1 S01 16, 144

SB3221(D) 1,2,1,�1 S
1/2
2 16, 144

SC3221(D) 1,2,3,�1 S
1/2
2 144

SD3221(D) 1,3,2, 1 S13 144

SE3221(D) 1,3,2, 1 S03 144

chosen from Table 1. Notice that S1/22 is contained in both the model SB’s and SC’s. The
di↵erence between the models is the SU(2)R (or additional U(1)) charge assignment; for
instance, SB422 (SC422) includes the SU(2)R singlet (triplet) DM. From Table 3, we find
that a 16 contains only SA’s and SB’s, while a 144 has all of the candidates listed in the
table.

Next, we perform the RGE4 analysis in the models presented in Table 3 to see if these
models achieve gauge coupling unification with appropriate GUT and intermediate scales.
The one-loop results for M

GUT

, M
int

, the unified gauge coupling ↵
GUT

, and the proton

4The beta functions for the minimal SO(10) GUT described above are given in Appendix B of Ref. [24].
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Table 4: One-loop result for scales, unified couplings, and proton lifetimes for models in
table. 3. The DM mass is set to be mDM = 1 TeV. The mass scales are given in GeV
and the proton lifetimes are in units of years. Blue shaded models evade the proton decay
bound, ⌧(p ! e+⇡0) > 1.4⇥ 1034 yrs [55,56].

Model log
10

M
GUT

log
10

M
int

↵
GUT

log
10

⌧p(p ! e+⇡0)

G
int

= SU(4)C ⌦ SU(2)L ⌦ SU(2)R

SA422 16.33 11.08 0.0218 36.8± 1.2

SB422 15.62 12.38 0.0228 34.0± 1.2

SC422 14.89 11.18 0.0243 31.0± 1.2

SD422 14.11 13.29 0.0253 28.0± 1.2

SE422 14.73 13.72 0.0243 30.4± 1.2

G
int

= SU(4)C ⌦ SU(2)L ⌦ SU(2)R ⌦D

SA422D 15.23 13.71 0.0245 32.4± 1.2

SB422D 15.01 13.71 0.0247 31.6± 1.2

SC422D 14.50 13.71 0.0254 29.5± 1.2

SD422D 13.95 13.47 0.0260 27.3± 1.2

SE422D 14.55 13.96 0.0251 29.7± 1.2

G
int

= SU(4)C ⌦ SU(2)L ⌦ U(1)R

SA421 14.62 10.96 0.0226 30.1± 1.2

SB421 14.55 11.90 0.0233 29.8± 1.2

SC421 14.15 10.92 0.0236 28.2± 1.2

SD421 13.91 12.80 0.0250 27.2± 1.2

SE421 14.45 13.12 0.0241 29.4± 1.2

G
int

= SU(3)C ⌦ SU(2)L ⌦ SU(2)R ⌦ U(1)B�L

SA3221 16.66 8.54 0.0217 38.1± 1.2

SB3221 16.17 9.80 0.0223 36.2± 1.2

SC3221 15.62 9.14 0.0230 34.0± 1.2

SD3221 14.49 12.07 0.0246 29.5± 1.2

SE3221 15.09 12.22 0.0237 31.9± 1.2

G
int

= SU(3)C ⌦ SU(2)L ⌦ SU(2)R ⌦ U(1)B�L ⌦D

SA3221D 15.58 10.08 0.0231 33.8± 1.2

SB3221D 15.40 10.44 0.0233 33.1± 1.2

SC3221D 14.58 11.62 0.0245 29.8± 1.2

SD3221D 14.07 12.13 0.0253 27.8± 1.2

SE3221D 14.60 12.29 0.0245 29.9± 1.2
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other models have MGUT too low

Higgs portal models!
Inert Higgs doublet models

lifetimes in the p ! e+⇡0 channel are shown in Table 4.5 Here, M
GUT

and M
int

are given
in GeV units, while the unit for proton lifetimes ⌧p(p ! e+⇡0) is years. The DM mass
is set to be m

DM

= 1 TeV. We have checked that altering the DM mass by an order
of magnitude results in only a O(0.2)% variation in the logarithmic masses of M

int

and
M

GUT

. The uncertainty of the lifetime reflects our innocence of the GUT-scale gauge
boson mass MX , which we take it to be within a range of 0.5M

GUT

. MX . 2M
GUT

.
It turns out that most models have already been ruled out by the current experimental
constraint ⌧(p ! e+⇡0) > 1.4 ⇥ 1034 yrs [55, 56]. The models that possibly survive this
constraint are SA422, SB422, SA3221, SB3221, SC3221, SA3221D, and SB3221D, which are highlighted
in blue shading in the table. In terms of SU(2)L ⌦ U(1)Y assignments, only S01 and S

1/2
2

are found to be viable candidates. Among them, models SB422, SC3221, SA3221D, and SB3221D
predict proton lifetimes close to the present limit, and thus can be tested in future proton
decay experiments.

3.3 Fine-tuning of scalar DM multiplets

In the previous section, we have reduced the possibilities for G
int

to the only three gauge
groups: SU(4)C ⌦SU(2)L⌦SU(2)R, SU(3)C ⌦SU(2)L⌦SU(2)R⌦U(1)B�L, and SU(3)C ⌦
SU(2)L⌦SU(2)R⌦U(1)B�L⌦D. According to Table 1, R

1

= 210, 45, and 210 yield the
above intermediate gauge groups, respectively. In this section, we briefly discuss how to
obtain a desired mass spectrum for the DM multiplet using these R

1

’s and R
2

= 126 with
the help of fine-tuning. For convenience, we show an explicit procedure for the fine-tuning
in Appendix C, by taking R

DM = 16 and G
int

= SU(3)C ⌦ SU(2)L ⌦ SU(2)R ⌦ U(1)B�L

as an example.
Let us first write down relevant terms for the mass terms of the DM multiplet R

DM

:6

�L
int

= M2|R
DM

|2 + 
1

R⇤
DM

R
DM

R
1

+ {
2

R
DM

R
DM

R⇤
2

+ h.c.}
+ �1

1

|R
DM

|2|R
1

|2 + �1
2

|R
DM

|2|R
2

|2 + �
�126
12

(R
DM

R
DM

)126 (R1

R⇤
2

)126 + h.c.
 

+ �45
1

(R⇤
DM

R
DM

)45 (R
⇤
1

R
1

)45 + �210
1

(R⇤
DM

R
DM

)210 (R
⇤
1

R
1

)210

+ �45
2

(R⇤
DM

R
DM

)45 (R
⇤
2

R
2

)45 + �210
2

(R⇤
DM

R
DM

)210 (R
⇤
2

R
2

)210 , (7)

where the subscripts after the parentheses denote the SO(10) representation formed by
the product in them. M , 

1

, and 
2

are dimensionful parameters, which we assume to
be O(M

GUT

). Notice that the term (R
DM

R
DM

)120 (R1

R⇤
2

)120 and its charge conjugate
vanish since the R

DM

is a bosonic field and (AB)120 is anti-symmetric with respect to
the exchange of A and B. In addition, the term (R

DM

R
DM

)10 (R1

R⇤
2

)10 does not give a
mass term for R

DM

; hR
1

R⇤
2

i is singlet with respect to the SM gauge interactions, and a
10 representation does not contain such a component. The terms with the coe�cients

5We restrict our attention to one-loop running as two loop e↵ects become very model dependent on
our choice of the scalar potential.

6In addition, there are couplings between the DM and the SM Higgs fields, which give a mass of the
order of the electroweak scale to the DM multiplet.
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FIG. 1: Running of the quartic couplings of Higgs field, for
selected inputs. The green solid, brown dashed, and blue dash-
dotted lines show the running of �, �sH , and �s, respectively,
while the green dotted curve shows the running of � in the
SM. The gauge coupling running is also shown in thin black
lines. Above the intermediate scale, the running of c�, c�,
and c�� is shown using the matching conditions in (4). The
free parameters are chosen as follows: At Q = mt, �s = 0
and �sH = 0.46 (which corresponds to mDM ' 1.5 TeV);
At Mint, c̃� = c0� = c�� = c�� = c0�� = c0�� = 0 and
c� = �c0�� = �m��/vR = 0.05. The non-zero couplings are
taken so that the low-energy mass spectrum we consider here
is realized.

Then a quartic potential can be written as

V
(4)
abv =

c�
2

�
tr(�†�)

�2
+

c0�
4
tr (��) tr

�
�†�†

�

+
c�
2

�
tr(�†�)

�2
+

c̃�
4
tr(�̃†�)tr(�†�̃)

+ c��tr(�
†�)tr(�†�) +

c�
2
|�|4 + c��|�|2tr(�†�)

+ c��|�|2tr(�†�) + c0���
†[�†,�]�

+ c0��tr
�
�†�[�†,�]

�
+ c0���

†�†��+ . . . . (3)

Note that we have only included those quartic couplings
which can be generated through RGE evolution, with
the exception of the last two; c0�� is needed to split the
masses of the two-Higgs doublet, �, while c0�� is induced
by the c0�� term via RGE e↵ects.

The quartic terms that contain two powers of �, as
well as the cubic coupling (see Eq. (5)) produce non-
trivial tree-level threshold corrections at Mint, after �

acquires a vev and the heavy fields are integrated out:

� = c� � (c�� + c0��)
2

c�
,

�sH = c�� �
(c�� + c0��)[m�� + (c�� � c0��)vR]

c�vR
,

�s = 3c� � 3
[m�� + vR(c�� � c0��)]

2

c�v2R
, (4)

where h�i = vRT�

with T
�

⌘ (�1 � i�2)/2. As is well
known, these threshold e↵ects always go in the direction
of benefiting vacuum stability [7]. The evolution of the
quartic couplings, c�, c�, and c�� above the intermediate
scale are also shown in Fig. 1 using the matching condi-
tions in (4). We use the one-loop RGEs for these quartic
couplings. Although we do not explicitly display the run-
ning of all quartic terms above the intermediate scale, we
have checked that although some run negative (notably
c0�), we have verified that the couplings satisfy su�cient
conditions which guarantee stability of the vacuum up to
the GUT scale.

The quadratic and cubic parts (which can lead to mass
terms) of the potential can be written as

V
(2,3)
abv = m2

�|�|2 +m2
�tr(�

†�) +m2
�tr(�

†�)

+m��

�
�̃†�†�

�
+ h.c. , (5)

where we take m�� to be real for simplicity. The relevant
matching conditions with the weak scale mass parameters
are

µ2
s = m2

� +
�
c�� � c0��

�
v2R + 2m��vR ,

µ2 = m2
� + (c�� + c0��) v

2
R , (6)

where the low energy fields are related to the high energy
fields as �1 = H and �0 = (s+ ia)/

p
2.

The running of �s receives a large contribution from
�sH , d�s/d lnQ = 12�2

sH/(4⇡)2 + · · · and thus by de-
manding perturbativity of the couplings (�i . 1/�i,
where �i is a relevant beta-function coe�cient) up to
the intermediate scale, we can set an upper bound on
�sH . 1.3. However, requiring perturbativity of the ci’s
above the intermediate scale places a stronger bound on
�s(Mint) . 2.4 which requires �sH(mt) . 0.9. Non-
zero values for other couplings further push the upper
limit to �sH(mt) . 0.6 in order to avoid singularities
in the RGEs. Since �sH controls the annihilation cross
section for s: �annvrel ' �2

sH/16⇡m2
DM, and the relic

density is proportional to 1/h�annvreli, the upper limit
on �sH corresponds to an upper limit to the DM mass
mDM . 2 TeV, similar to that in the minimal dark mat-
ter model [24] without an intermediate scale.

The Higgs mass parameter, µ2, must be negative in or-
der to break the electroweak symmetry, and in the SM,
µ2 remains negative as it is run up to high energies. The

Example based on scalar!
 singlet DM  (SA3221) with

2

negative. The presence of the singlet scalar DM at low
energies also deflects the running of the Higgs quartic
coupling. Moreover, we show that the negative mass-
squared needed for electroweak symmetry breaking runs
positive due the coupling of the Higgs field with the DM
singlet.

The requirement for the radiative electroweak sym-
metry breaking imposes a lower bound on the DM–
Higgs coupling. This then leads to a lower limit on the
DM mass if one assumes that the thermal relic abun-
dance of the DM agrees with the observed DM density
⌦DMh2 ' 0.12 [21]. On the other hand, perturbativity
of the couplings in the model gives an upper limit on the
DM–Higgs coupling, and thus on the DM mass. As a
result, a finite DM mass region is allowed by these two
conditions. We find that this mass range can be probed
in the XENON1T experiment [22].

An exemplary SO(10) model with stable dark matter.—
When one combines the number of possible intermediate
scale gauge groups with the multitude of choices for dark
matter and Higgs representations in an SO(10) model,
one may think that the amount of freedom one has for
model building is enormous. However, in practice when
one imposes the conditions that i) gauge coupling unifi-
cation occurs, ii) that the intermediate scale is found to
be below the GUT scale, and iii) that the GUT scale is
high enough so that the proton lifetime exceeds current
experimental bounds, only a handful of possible mod-
els survive [14, 15]. Furthermore, since any dark matter
candidate must be part of a larger SO(10) representation,
that multiplet must be split, putting further constraints
on the possible choice of field content.

In this letter, we choose one example of a scalar dark
matter model with an intermediate scale gauge group
given by Gint = SU(3)C ⌦ SU(2)L ⌦ SU(2)R ⌦U(1)B�L.
We will examine the model labeled SA3221 in [15] for
which the dark matter is a scalar singlet originating in a
16 of SO(10). In addition to SM fields, the model em-
ploys a 45 (or 210) to break SO(10) to Gint when the
(15, 1, 1) component (under SU(4)C⌦SU(2)L⌦SU(2)R)
acquires a vacuum expectation value (vev). The inter-
mediate scale gauge group is subsequently broken when
the color singlet, right-handed triplet sitting in the 126

acquires a vev. All other components of the 126 are
expected to have GUT scale masses. In addition to an
explicit (GUT scale) mass term for the 16, the scalar
multiplet can have mass contributions from its couplings
to the Higgs 45 and 126. An explicit calculation of the
fine-tuning needed to obtain a TeV scale mass for the
singlet scalar dark matter candidate can be found in Ap-
pendix C of [15]. In the example given there, all members
of the 16 are GUT scale except the scalar analog of eR
(ẽR) which has an intermediate scale mass, and ⌫̃R which
has a weak scale mass.

Renormalization group evolution of the Higgs couplings
and masses.—The renormalization group evolution be-
tween the weak scale and intermediate scale is almost
identical to the SM. The only di↵erence comes from
the inclusion of the SM singlet dark matter candidate,
s ⌘ Re[⌫̃R]. Below the intermediate scale, the scalar po-
tential is relatively simple,

Vblw = µ2|H|2+1

2
µ2
ss

2+
�

2
|H|4+�sH

2
|H|2s2+�s

4!
s4 . (1)

In many ways, this resembles the minimal dark mat-
ter model often referred to as the Higgs portal [23, 24].
The mass of our dark matter candidate is given by
m2

DM = �sHv2/2+µ2
s. Furthermore, fixing the dark mat-

ter mass will also fix �sH at the weak scale (taken here
to be mt) through the relic density (assuming standard
thermal freeze-out): mDM ' 3.3�sH TeV. In this paper,
we compute the DM relic density using micrOMEGAS [25].
The evolution of the Higgs quartic coupling in the SM
with and without the inclusion of the scalar s is shown
in Fig. 1 by the green solid and dotted curves, respec-
tively. The renormalization group equations (RGE) are
run at the two-loop level1 and one sees that the SM quar-
tic coupling runs negative just above 1010 GeV [4] with-
out the scalar contribution. With the scalar contribution,
the running of � would remain positive out to the GUT
scale. Note that at the intermediate scale (determined by
the conditions for gauge coupling unification; the running
of the gauge couplings in SA3221 is shown by thin black
lines in Fig. 1), Mint ' 109 GeV, � > 0. Gauge cou-
pling unification also determines the GUT scale to be
MGUT ' 1.5⇥ 1016 GeV, which is high enough to evade
the proton decay limit. Also shown is the running of �s

(blue dash-dotted) and �sH (brown dashed).

Above the intermediate scale, it is necessary to include
in addition to s, the right-handed doublet �(1,1,2, 1)
which contains s, the Higgs triplet �(1,1,3, 2) residing
in the 126, two heavy complex fields in addition to the
SM Higgs doublet which all sit in a complex �(1,2,2, 0),
and finally the three right handed neutrinos sitting in the
fermionic 16 matter representations. Above the interme-
diate scale, we write � = (�1, �̃2), �̃ ⌘ �2�⇤�2 (�a are
the Pauli matrices), � = (�+,�0)T , and

� =

✓
�+/

p
2 �++

�0 ��+/
p
2

◆
, (2)

where �i = (�0
i ,�

�

i )
T is an SU(2)L doublet; �̃ ⌘ i�2�

⇤.

1 We use the three-loop RGEs for the top Yukawa and Higgs quar-
tic couplings. We also include the two-loop electroweak threshold
corrections according to Ref. [4]. We use the MS scheme up to
the intermediate scale, and switch to the DR scheme at Mint.
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negative. The presence of the singlet scalar DM at low
energies also deflects the running of the Higgs quartic
coupling. Moreover, we show that the negative mass-
squared needed for electroweak symmetry breaking runs
positive due the coupling of the Higgs field with the DM
singlet.

The requirement for the radiative electroweak sym-
metry breaking imposes a lower bound on the DM–
Higgs coupling. This then leads to a lower limit on the
DM mass if one assumes that the thermal relic abun-
dance of the DM agrees with the observed DM density
⌦DMh2 ' 0.12 [21]. On the other hand, perturbativity
of the couplings in the model gives an upper limit on the
DM–Higgs coupling, and thus on the DM mass. As a
result, a finite DM mass region is allowed by these two
conditions. We find that this mass range can be probed
in the XENON1T experiment [22].

An exemplary SO(10) model with stable dark matter.—
When one combines the number of possible intermediate
scale gauge groups with the multitude of choices for dark
matter and Higgs representations in an SO(10) model,
one may think that the amount of freedom one has for
model building is enormous. However, in practice when
one imposes the conditions that i) gauge coupling unifi-
cation occurs, ii) that the intermediate scale is found to
be below the GUT scale, and iii) that the GUT scale is
high enough so that the proton lifetime exceeds current
experimental bounds, only a handful of possible mod-
els survive [14, 15]. Furthermore, since any dark matter
candidate must be part of a larger SO(10) representation,
that multiplet must be split, putting further constraints
on the possible choice of field content.

In this letter, we choose one example of a scalar dark
matter model with an intermediate scale gauge group
given by Gint = SU(3)C ⌦ SU(2)L ⌦ SU(2)R ⌦U(1)B�L.
We will examine the model labeled SA3221 in [15] for
which the dark matter is a scalar singlet originating in a
16 of SO(10). In addition to SM fields, the model em-
ploys a 45 (or 210) to break SO(10) to Gint when the
(15, 1, 1) component (under SU(4)C⌦SU(2)L⌦SU(2)R)
acquires a vacuum expectation value (vev). The inter-
mediate scale gauge group is subsequently broken when
the color singlet, right-handed triplet sitting in the 126

acquires a vev. All other components of the 126 are
expected to have GUT scale masses. In addition to an
explicit (GUT scale) mass term for the 16, the scalar
multiplet can have mass contributions from its couplings
to the Higgs 45 and 126. An explicit calculation of the
fine-tuning needed to obtain a TeV scale mass for the
singlet scalar dark matter candidate can be found in Ap-
pendix C of [15]. In the example given there, all members
of the 16 are GUT scale except the scalar analog of eR
(ẽR) which has an intermediate scale mass, and ⌫̃R which
has a weak scale mass.

Renormalization group evolution of the Higgs couplings
and masses.—The renormalization group evolution be-
tween the weak scale and intermediate scale is almost
identical to the SM. The only di↵erence comes from
the inclusion of the SM singlet dark matter candidate,
s ⌘ Re[⌫̃R]. Below the intermediate scale, the scalar po-
tential is relatively simple,

Vblw = µ2|H|2+1
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|H|4+�sH
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In many ways, this resembles the minimal dark mat-
ter model often referred to as the Higgs portal [23, 24].
The mass of our dark matter candidate is given by
m2

DM = �sHv2/2+µ2
s. Furthermore, fixing the dark mat-

ter mass will also fix �sH at the weak scale (taken here
to be mt) through the relic density (assuming standard
thermal freeze-out): mDM ' 3.3�sH TeV. In this paper,
we compute the DM relic density using micrOMEGAS [25].
The evolution of the Higgs quartic coupling in the SM
with and without the inclusion of the scalar s is shown
in Fig. 1 by the green solid and dotted curves, respec-
tively. The renormalization group equations (RGE) are
run at the two-loop level1 and one sees that the SM quar-
tic coupling runs negative just above 1010 GeV [4] with-
out the scalar contribution. With the scalar contribution,
the running of � would remain positive out to the GUT
scale. Note that at the intermediate scale (determined by
the conditions for gauge coupling unification; the running
of the gauge couplings in SA3221 is shown by thin black
lines in Fig. 1), Mint ' 109 GeV, � > 0. Gauge cou-
pling unification also determines the GUT scale to be
MGUT ' 1.5⇥ 1016 GeV, which is high enough to evade
the proton decay limit. Also shown is the running of �s

(blue dash-dotted) and �sH (brown dashed).

Above the intermediate scale, it is necessary to include
in addition to s, the right-handed doublet �(1,1,2, 1)
which contains s, the Higgs triplet �(1,1,3, 2) residing
in the 126, two heavy complex fields in addition to the
SM Higgs doublet which all sit in a complex �(1,2,2, 0),
and finally the three right handed neutrinos sitting in the
fermionic 16 matter representations. Above the interme-
diate scale, we write � = (�1, �̃2), �̃ ⌘ �2�⇤�2 (�a are
the Pauli matrices), � = (�+,�0)T , and

� =

✓
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, (2)

where �i = (�0
i ,�
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T is an SU(2)L doublet; �̃ ⌘ i�2�

⇤.

1 We use the three-loop RGEs for the top Yukawa and Higgs quar-
tic couplings. We also include the two-loop electroweak threshold
corrections according to Ref. [4]. We use the MS scheme up to
the intermediate scale, and switch to the DR scheme at Mint.
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Higgs mass term runs !
negative and depends on λsH

4

presence of the dark matter scalar however a↵ects the
running as dµ2/d lnQ = �sHµ2

s/(4⇡)
2 + · · · and causes

µ2 to run positive at higher renormalization scales [16].
In other words, the dark matter candidate can induce ra-
diative electroweak symmetry similar to the mechanism
in supersymmetric models [6]. As the running of µ de-
pends on the combination �sHµ2

s we can obtain a min-
imum value for µs (and hence mDM) which is indepen-
dent of the relic density constraint by maximizing �sH .
We find that for �sH = 0.6, µ2 > 0 at the intermediate
scale (at 1 TeV) when µs & 360 GeV (1150 GeV), corre-
sponding to mDM & 380 GeV (1160 GeV). Here, we set
�s(mt) = 0. Taking the limits on �sH from the pertur-
bativity of �s and the limit on µs from the requirement
of radiative electroweak symmetry breaking, we find that
the dark matter mass must lie in a restricted range (when
demanding the more natural choice of symmetry break-
ing at 1 TeV) mDM = 1.2–2 TeV.

When one imposes the constraint from the relic den-
sity, we obtain somewhat stronger bounds on �sH . In
Fig. 2, we show the value of sgn(µ2)|µ| for Q = Mint

and 1 TeV as a function of �sH(mt). Here again, we set
�s(mt) = 0. As one can see that when Q = Mint, we
have �sH(mt) > 0.2 corresponding to mDM > 670 TeV
and when Q = 1 TeV, we have �sH(mt) > 0.41 corre-
sponding to mDM > 1.35 TeV.
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FIG. 2: The value of sgn(µ2)|µ| for Q = Mint and 1 TeV as
a function of �sH(mt). mDM at the weak scale is determined
from the requirement for the thermal relic abundance using
mDM ⇡ 3.3�sH TeV.

The singlet DM candidate in our model can be probed
in DM direct detection experiments. In Fig. 3, we show
the spin-independent (SI) DM-nucleon scattering cross
section �SI as a function of the DM mass. Here, we
require the relic density condition to determine �sH .
The lower solid (upper dashed) brown line shows the

result for which we use the nucleon matrix elements
given in Ref. [26] (Ref. [27]). In either case, we obtain
�SI ' 10�45 cm2. The gray shaded region is excluded by
the current limit from the LUX experiment [28]. We also
show the projected sensitivity of XENON1T [22] by the
black dotted line. We find that all of the DM mass range
can be probed at this experiment.
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FIG. 3: The SI DM-nucleon scattering cross section as a func-
tion of mDM. Here, �sH is determined from the relic density
condition.

Summary.—We have presented an SO(10) model with
gauge coupling unification made possible through an in-
termediate scale at ' 109 GeV. SO(10) is broken to
Gint = SU(3)C ⌦ SU(2)L ⌦ SU(2)R ⌦U(1)B�L when the
right-handed triplet in the 126 obtains a vev. In this
model, the lightest member of a complex scalar 16 is
stable and plays the role of our dark matter candidate,
s. The specific example discussed here can be viewed
as a UV completion of the minimal (scalar) dark matter
model. We have shown that in addition to gauge cou-
pling unification, and a dark matter candidate, unlike the
case in the SM, vacuum stability is achieved up to the
GUT scale, and radiative electroweak symmetry break-
ing is triggered by the interactions of the dark matter
and the SM Higgs. The latter result taken together with
the requirement of perturbative couplings to the GUT
scale limit the DM mass to lie between 1.35–2 TeV. This
mass range should be probed in future direct detection
experiments.
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Examples:
SM Fermion Singlets: Produced thermally out of equilibrium!

⇒ Fermionic candidates (NETDM)Table 6: NETDM models. Mint and MGUT are given in GeV. All of the values are
evaluated with the two-loop RGEs.

Model I Model II

Gint SU(4)C ⌦ SU(2)L ⌦ SU(2)R SU(4)C ⌦ SU(2)L ⌦ SU(2)R ⌦D

RDM (1,1,3)D in 45D (15,1,1)W in 45W

R1 210R 54R

R2 (10,1,3)C � (1,1,3)R (10,1,3)C � (10,3,1)C � (15,1,1)R

log10(Mint) 8.08(1) 13.664(5)

log10(MGUT) 15.645(7) 15.87(2)

gGUT 0.53055(3) 0.5675(2)
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(b) Model II

Figure 4: Running of gauge couplings. Solid (dashed) lines show the case with (without)
DM and additional Higgs bosons. Blue, green, and red lines represent the running of the
U(1), SU(2) and SU(3) gauge couplings, respectively.

whether these models can give appropriate masses for light neutrinos. Next, in Sec. 5.2,
we evaluate proton lifetimes in each model and discuss the testability in future proton
decay experiments. Finally, we compute the abundance of DM produced by the NETDM
mechanism in Sec. 5.3, and predict the reheating temperature after inflation.
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Examples:
Non-Singlets: Fermions

into account, the thermal relic abundance of F03 is computed in Ref. [62] and found to
be consistent with the observed DM density if m

DM

' 2.7 TeV as in the case of super-
symmetric winos. As for F

1/2
2 and bF1/22 , the favored mass value is ' 1.1 TeV [37] as in

the case of supersymmetric Higgsinos. As far as we know, there is no calculation for the
other fermionic DM candidates that includes the Sommerfeld enhancement; without the
e↵ect, the thermal relic of F13, bF13, F

1/2
4 , and F

3/2
4 is consistent with the observed value if

m
DM

' 1.9 TeV, 1.9 TeV, 2.4 TeV, and 2.6 TeV, respectively [53].

4.2 Real triplet DM

We begin our discussion of fermionic DMmodels with the Y = 0 case. As discussed earlier,
these are less constrained by direct detection experiments. According to Table 2, such
candidates belong to SU(2)L triplets in a 45, 54 or 210 of SO(10). A summary of SU(4)C⌦
SU(2)L ⌦ SU(2)R quantum numbers of these DM multiplets are listed in Table. 5. Note
that the B�L and T 3

R charges for all of these DM candidates vanish, and therefore they are
regarded as real Majorana fermions. As in the scalar DM scenario, the DMmultiplet in the
54 or 210 is degenerate with other components with respect toG

int

, and we are required to
break this degeneracy to avoid unwanted long-lived colored/charged particles [24]. In the
fermionic case, however, a renormalizable Yukawa term like R

DM

R
DM

126H is forbidden
by SO(10) symmetry and the choice of DM representation [24], and thus we are unable
to use the 126 Higgs to break the degeneracy. Therefore, we need to introduce additional
Higgs fields at the intermediate scale in these cases.

Table 5: Real triplet DM candidates in various SO(10) representations.

SO(10) representation SU(4)C ⌦ SU(2)L ⌦ SU(2)R
45 (1,3,1)

54 (1,3,3)

210 (15,3,1)

For simplicity, we restrict ourselves to the cases where the intermediate scale VEVs
develop in the SM singlet direction of R

1

and/or R
2

= 126. One of the SM singlet
components of R

1

should have a VEV of O(M
GUT

) to break SO(10) into G
int

. The
R

2

Higgs field acquires an O(M
int

) VEV to break G
int

, but it is not able to give mass
di↵erences among the components in R

DM

, as mentioned above. Thus, we need to exploit
an extra SM singlet component in R

1

which remains light compared to the GUT scale,
to induce intermediate-scale mass terms for R

DM

, which are to be used to generate the
required mass splitting. We denote the VEVs of these two components of R

1

which break
SO(10) and G

int

by v
GUT

⇠ M
GUT

and v
int

⇠ M
int

, respectively. Then, the mass splitting
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RDM
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h210i
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(a) Scalar exchange

R0
DM R0

DM

RDM

RH

RDM

RH

(b) Fermion exchange

Figure 2: Diagrams that generate the mass splitting between the Weyl components of hy-
percharged Dirac DM through the exchange of an intermediate-scale (a) scalar (b) fermion.

Table 8: The upper half of the table shows the fermionic Y = 1/2 candidates for RDM

in various SO(10) representations; the lower half of the table shows the fermionic singlet
candidates for R0

DM.

SO(10) representation SU(4)C ⌦ SU(2)L ⌦ SU(2)R B � L

10, 120, 2100 (1,2,2) 0

120, 126 (15,2,2) 0

210 (10,2,2)� (10,2,2) ±2

2100 (1,4,4) 0

54, 210 (1,1,1) 0

45 (1,1,3) 0

45, 210 (15,1,1) 0

210 (15,1,3) 0

126 (10,1,3) 2

have appropriate particle and Higgs content, so that the DM acquires the right mass
through Eq. (11) and Eq. (12). It turns out that the viable models are limited to G

int

=
SU(4)C⌦SU(2)L⌦SU(2)R or SU(4)C⌦SU(2)L⌦U(1)R. These models are listed in Table 9

and no quartic models (F1/24 ) were found. The model FA422 is incompatible with small
neutrino masses, since the Yukawa coupling for the 16 of this model is unified at M

GUT

.
For models FA421 and FB422 , on the other hand, we can avoid the neutrino mass problem by
fine-tuning the Yukawa couplings with additional Higgs fields at the intermediate scale, as
discussed in Sec. 4.2. Among them, the model FA421 has a phenomenologically interesting
consequence. Since M

int

' 3 TeV, this model predicts a new massive neutral gauge

22

Table 2: List of SU(2)L ⌦ U(1)Y multiplets in SO(10) representations that contain an
electric neutral color singlet.

Model B � L SU(2)L Y SO(10) representations

F01

0

1 0 45, 54, 210

F
1/2
2 2 1/2 10, 120, 126, 2100

F03 3 0 45, 54, 210

F13 3 1 54

F
1/2
4 4 1/2 2100

F
3/2
4 4 3/2 2100

S01

1

1 0 16, 144

S
1/2
2 2 1/2 16, 144

S03 3 0 144

S13 3 1 144

bF01
2

1 0 126

bF1/22 2 1/2 210

bF13 3 1 126

of F01. The second example is based on SU(4)C ⌦ SU(2)L ⌦ SU(2)R ⌦D and consists of a
(15,1,1) originating from either a 45 or a 210 in SO(10). Since the 15 of SU(4)C carries
zero B � L charge, this is also an example of F01. All possible candidates associated with
bF01 were excluded in [24]. A fermion that is a singlet under the intermediate gauge group
can also be produced through the exchange of the GUT scale particles, and thus be a
DM candidate. For example, the case of the (1,1,1) component of a 210 is discussed in
Ref. [24], which is again an example of F01 DM.

The scalar singlet S01 and triplet S03 can interact with the SM Higgs boson e�ciently
through the quartic coupling and are potential good DM candidates to be discussed below.
These can be taken to be either real or complex. For S01, there is no di↵erence in any of
our results whether S01 is real or complex. We have taken S03 to be real, but there would
be no qualitative di↵erence in our results for complex S03. In addition, S03 couples to the
SM particles via the weak interaction. Similarly, the fermion triplet F03 is a wino-like
DM candidate and will also be considered below. In general, the neutral component of
a SU(2)L ⌦ U(1)Y multiplet can interact with SM particles through exchange of W or Z
boson, and thus can be a good DM candidate. Such DM candidates have been widely
studied in the literature [37–47].

There are also DM candidates which have non-zero hypercharge. These are: F1/22 , F13,

F
1/2
4 , F3/24 , S1/22 , S13, bF

1/2
2 , and bF13. These DM candidates are severely constrained by DM

6

SM Triplets (Wino)

SM Doublets!
(Higgsino)

SM Singlets!
for mixing!
(Bino)

Nagata, Olive, Zheng



Examples:
Non-Singlets: Fermions

Table 7: The one-loop results for MGUT, Mint, ↵GUT, and proton lifetimes for real triplet
fermionic DM models. Here we set the DM mass to be 1 TeV. The mass scales and proton
decay lifetime are in unit of GeV and years, respectively. In the blue shaded model, gauge
coupling unification is achieved with a su�ciently high GUT scale.

R
DM

Additional Higgs log
10

M
int

log
10

M
GUT

↵
GUT

log
10

⌧p(p ! e+⇡0)

in R
1

G
int

= SU(4)C ⌦ SU(2)L ⌦ SU(2)R
(1,3,1) – 15.50 13.69 0.0263 –

(1,3,1) (15,1,3) – – – –

(1,3,1) (15,1,1) 15.65 13.47 0.0263 –

(1,3,1) (15,1,1) 6.54 17.17 0.0252 39.8± 1.2

(15,1,3)

(15,3,1) (15,1,1) 14.44 14.10 0.0246 –

(15,3,1) (15,1,1) 14.52 14.11 0.0243 –

(15,1,3)

G
int

= SU(4)C ⌦ SU(2)L ⌦ SU(2)R ⌦D

(1,3,1) – 14.78 14.04 0.0250 –

G
int

= SU(4)C ⌦ SU(2)L ⌦ U(1)R
(15,3, 0) (15,1,0) 14.55 14.21 0.0246 –

that cannot split the degeneracy of DM multiplet as in Eq. (11). The mass scales and
proton decay lifetime are in units of GeV and years, respectively. We find that there is
only one promising model with G

int

= SU(4)C ⌦ SU(2)L ⌦ SU(2)R, which is highlighted
by blue shading in Table. 7. In this case, since the DM multiplet is a singlet under both
SU(4)C and SU(2)R, the additional Higgs fields are not necessary from the viewpoint of
the mass splitting for the DM multiplet; namely, there is no degeneracy problem for this
model. Rather, they are required so that the model achieves a good unification scale
beyond proton decay constraint. The model has, however, a quite low intermediate scale
that results in large neutrino masses through the type-I seesaw mechanism since the Dirac
mass terms for neutrinos are related to the up-type Yukawa couplings in this setup. A
simple way to evade this problem is to introduce a complex (15,2,2)C Higgs field in a 126
to modify the relation, as discussed in Ref. [24].10 If a (15,2,2)C Higgs is also present at
the intermediate scale, it turns out that gauge coupling unification is still realized, with
log

10

M
int

= 9.28, log
10

M
GUT

= 16.38, ↵
GUT

= 0.038, and log
10

⌧p(p ! e+⇡0) = 35.9.
Here again, the mass scales and proton decay lifetime are expressed in units of GeV and

10For the e↵ects of a (15,2,2)C Higgs field on the Yukawa couplings, see Refs. [27, 63].
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by blue shading in Table. 7. In this case, since the DM multiplet is a singlet under both
SU(4)C and SU(2)R, the additional Higgs fields are not necessary from the viewpoint of
the mass splitting for the DM multiplet; namely, there is no degeneracy problem for this
model. Rather, they are required so that the model achieves a good unification scale
beyond proton decay constraint. The model has, however, a quite low intermediate scale
that results in large neutrino masses through the type-I seesaw mechanism since the Dirac
mass terms for neutrinos are related to the up-type Yukawa couplings in this setup. A
simple way to evade this problem is to introduce a complex (15,2,2)C Higgs field in a 126
to modify the relation, as discussed in Ref. [24].10 If a (15,2,2)C Higgs is also present at
the intermediate scale, it turns out that gauge coupling unification is still realized, with
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boson, Z 0, and vector leptoquarks whose masses are around a few TeV. These particles
can be probed in future LHC experiments; for instance, dilepton resonance searches [64]
are powerful probes for such a Z 0. The leptoquarks are pair produced at the LHC, and
their signature is observed in dijet plus dilepton channels [65]. Since they are produced
via the strong interaction, their production cross section is quite large. Thanks to the
distinct final states and large production cross section, the LHC experiments can probe
TeV-scale leptoquarks at the next stage of the LHC running.

Table 9: Possible hypercharged fermionic DM models that is not yet excluded by current
proton decay experiments. The quantum numbers are labeled in the same order as Gint.
The subscripts D and W refer to Dirac and Weyl respectively. The numerical results are
calculated for DM mass of 1 TeV. The mass scales and proton decay lifetime are in unit
of GeV and years, respectively.

Model R
DM

R0
DM

Higgs log
10

M
int

log
10

M
GUT

↵
GUT

log
10

⌧p

G
int

= SU(4)C ⌦ SU(2)L ⌦ U(1)R
FA421 (1,2, 1/2)D (15,1, 0)W (15,1, 0)R 3.48 17.54 0.0320 40.9± 1.2

(15,2, 1/2)C

G
int

= SU(4)C ⌦ SU(2)L ⌦ SU(2)R
FA422 (1,2,2)W (1,3,1)W (15,1,1)R 9.00 15.68 0.0258 34.0± 1.2

(15,1,3)R

FB422 (1,2,2)W (1,3,1)W (15,1,1)R 5.84 17.01 0.0587 38.0± 1.2

(15,2,2)C

(15,1,3)R

To conclude this section, we perform a scan for more general models where the addi-
tional intermediate scale Higgs fields are not restricted to the ones in R

1

. Instead, they can
be any combination of G

int

representations that contain SM singlets. The Higgs fields can
be taken to be either real or complex. Moreover, we also consider the possible addition of a
(15,2,2)C Higgs at the intermediate scale, which can be used to evade the problem of large
neutrino masses. The result of the scan is demonstrated in a scatter plot in Fig. 3. The DM
mass is again fixed to be 1 TeV. The real triplet DM, R

DM

–R0
DM

doublet-singlet mixing
DM and doublet-triplet mixing DM cases are colored in red, blue and green, respectively.
The triangle, circle and square marker corresponds to G

int

= SU(4)C ⌦ SU(2)L ⌦ U(1)R,
SU(4)C ⌦ SU(2)L ⌦ SU(2)R and SU(4)C ⌦ SU(2)L ⌦ SU(2)R ⌦ D, respectively. The
M

int

> M
GUT

region is theoretically disfavored, and is indicated by the gray shaded
area. In this plot, we do not consider the realizability of the mass hierarchy for the DM
multiplet, and thus the number of good models should be smaller than that shown in the
plot. All of the SU(4)C ⌦ SU(2)L ⌦ SU(2)R ⌦D cases with doublet DM predict the same
M

int

, since the addition of extra fields at the intermediate scale does not change M
int

in the presence of the left-right symmetry [24]. As can be seen from the figure, model
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Summary

LHC susy and Higgs searches have pushed CMSSM-like 
models to “corners” or strips 

SO(10) models contain almost all of the benifits of SUSY 
models: 

gauge coupling unification, radiative EWSB, stable Higgs 
vacuum, stable DM candidate….  

Several possibilities in non-SUSY SO(10) models which are 
phenomenologically consistent with p-decay limits 

Challenge lies in detection strategies


