Tune-out wavelength spectroscopy:
A new technique to characterize atomic structure
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Atomic parity violation

» S states in atoms have even parity
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* Transition |nS) — |n'S) ~ (nS|d|n’'S) = 0
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Atomic parity violation

* Electron interacts with nucleus °
— weak interaction violates parity
— mixes P character into S states o .
— allows transition!

* Measure transition rate
— get strength of weak interaction
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Fundamental symmetries

 Weak interaction violates CP symmetry

e So does the universe overall
— too much to explain
via Standard Model

e Study symmetry violations
— look for surprises



Weak interaction

 Measure energy-dependence of weak interaction
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e Steady improvements
— Except for atomic result, from 1995



Interpreting APV

 Measure transition rate, relate to weak interaction

Tl’=5 ESS _ En’P1/2
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Interpreting APV

* Need precise dipole matrix elements

Principle: (55|d|5P)

— measure accurately
Intermediate: (55|d|nP) and (6S|d|nP) forn < 12
— calculate accurately
Tail: (55|d|nP) and (6S|d|nP) forn > 12
— estimate

Also some additional corrections, calculated
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Error contributions

e Contributions to PNC error:

Rel. contribution Uncertainty

Principle 0.88
Intermediate 0.08
Tail 0.02
Other 0.01
Total 1.00

0.0015
0.0015
0.004
0.001
0.005

* 1995 experiment uncertainty: 0.0035

Limited by theory, mostly tail contribution



How to improve?

* Measure dipole matrix elements
— especially high-n tail
 Hard to do directly
— infinitude of states
— difficult to calibrate measurements



Measuring matrix elements

: Do
* Shine laser on atom VaVaVaVaV B!

— detuned from any transition
* Get energy shift

a = electric polarizability
U = — §a<82> X —al € = electric field
I = laser intensity

 a depends on laser frequency w
— Large for laser close to resonance



Measuring matrix elements
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* Polarizability of 55 ground state
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Measuring matrix elements

 Measure «a directly?
* One way: atom interferometer

Splitting laser Bose condensate Splitting laser
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<>
Split wave function: 0.1 mm
_ — = 1.2 cm/s
2hk +2hk — /



Atom interferometer

* Could measure «a directly
* One way: atom interferometer

Wave packets

<~ @&

Let packets propagate



Atom interferometer

* Could measure «a directly
* One way: atom interferometer

Wave packets

N
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Shine laser on one packet

Phase shift

Ut
¢stark - 7 Stark beam



Atom interferometer

* Could measure «a directly
* One way: atom interferometer

) - -

Reverse momentum of packets




Atom interferometer

* Could measure «a directly
* One way: atom interferometer

Packets return to starting point



Atom interferometer

* Could measure «a directly
* One way: atom interferometer
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Recombine with laser:

Interference:
Fraction of atoms returnedtop = 0O is
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Atom interferometer

* Could measure «a directly
* One way: atom interferometer

Let wave packets separate

Interference:
Fraction of atoms returnedtop = 0O is

2
COS ¢stark



Atom interferometer

 Fita = 5.65(16) X 10°
atomic units at 780.23 nm

N/N

* 3% error, from intensity
calibration

00" ' ' '
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IT [mW ms cm]

* Know |{5P]|d|5S)|* to
0.1% from lifetime

Need ~107> precision to extract all contributions to «



Measuring matrix elements

e Polarizability of 55 ground state

@(©) % agore+ ) |(nPy|d]55)[]

n=5
J=1/2,3/2

 Find another method?
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Tune-out measurement

In between resonances, a passes through O

Polarizability and Tune-out wavelength
near 5P resonances

| 5P — Location of zero
doesn’t depend on
laser intensity
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Polarizability and Tune-out wavelength
near 5P resonances

Tune-out measurement - -

e Use same atom interferometer E ° GWL
technique

 Measure slope T i

Tune-out Interferometer Tune-out Interferometer
A =790.03104 nm A =790.03310
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A, (nm)

Tune-out measurement
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60 X better than previous exp.
8 X better than subsequent



Compare to theory

 Measurement doesn’t directly give matrix elements

* Use theory to extract information

a=a T+ z d’%fwn] Wnj = Enp; = Ess,
- core 2
— W
J=1/2,3/2

e Contributions:

X = Qprin T Aint T Atail T Acore

/ I \
5P states n>12

core electrons
n=6to12



Compare to theory

* Calculate contributions for A = Ay (M. Safronova):

10 r 8.71 + .09
5 L
. 1.89 + .02
S aprin 0.1+0.1
S 0
S Aint Atail A core
5 L
-10 | =
Value MW Error
—10+ 2

Experiment says sum =0 + 0.1 au



Compare to theory
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* Measurement specifies Aprin = SP contributions

Mainly ratio d3 /2/d1/2

* Theory for ratio much
more accurate than
individual d’s

* Confirmed by tune-out
measurement
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Compare to theory

* Original theory:
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Compare to theory

e With tune-out constraint:

10 r 8.71 + .09
5 L
. 1.89 +.02
) aprin 0.1+0.1
KL 0
S Aint Utail A core
5 L
10 |
Value M Error
—10.7 + 0.2

-15 Gt

Can we get more information? Especially for tail?



More measurements

 More tune-out wavelengths near other P states

Polarizability and Tune-out wavelengths

0.10 near 6P resonances
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 Two more data points

— Also two new parameters d6’1/2 and d6,3/2

— Not a solution



More measurements

* Another degree of freedom: light polarization

* Atoms preparedinm = 1/2

* Coupling depends on polarization
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Polarization effects

* Two components to polarizability:

a = al® + va v = degree of circular
'f‘ '\ polarization
scalar vector
d?. o dz w
(0) (0) n3/2%n3/2 nqi;,¥nl/2
ar’ = Qeore T 2 2 > .2
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Polarization effects

* Measuring a® and aW gives two data points per A,
— different dependence on matrix elements

 Measure near 5P and 6P states:
— three tune-out wavelengths
— six polarizabilities
— seven unknowns (all normalized to ds 1 /,):

dssj deszz dorz algle alre g )

* Measure agg%e using Rydberg atoms



Rydberg measurement

* Electron in high-n, high-L state does not penetrate core

* Energy shifted by polarizability of core aggie

Rydberg
electron

* Collaborating with TFG to measure for Rb

)
1
o
o

Microwave spectroscopy
on 18f to 18g transition:

o
)

Rydberg Signal (arb

o
)
o

1 2 3 4
Microwave Frequency - 13970 MHz



Polarization effects

* Measuring a® and aW gives two data points
— different dependence on matrix elements

 Measure near 5P and 6P states:
— three tune-out wavelengths
— six polarizability constraints

SIX :
— seven unknowns (all normalized to ds 1 /,):

dsaje doz doae o, ale @ o)



Polarization measurements

 Need precise control of light polarization ~107>
* Distorted by vacuum window ~1073




Polarization measurements

* Minimize errors using circularly polarized light:
v parameter = +1 = max or min
deviations 2"d order in distortion effect ~107°

e Establish circular polarization using atoms
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Polarization control

* Apply circular polarized light to atoms
a=a9 + pg® v ~ amount of circ polz

* Vary v using magnetic field

Stark laser



Polarization control

* Need to ensure that B is behaving as expected
* Use same trick with microwave spectroscopy

resonance X B

M) +—

Microwaves



Polarization control

* Need to ensure that B is behaving as expected
* Use same trick with microwave spectroscopy

BT
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Expected results

Completing polarization and B-field characterization
Measure 5P states soon, then 6P states
Monte Carlo model:
For expected meas. accuracy, get 45 to 0.01 au
~10x better than current theory

Resolve parity violation bottleneck?



Impact

* |ssues:

— Measure with Rb, parity exp with Cs

— Tail contribution not exactly same for «, PV exps
* Provide benchmark for theory

— Test methods, learn what works

 Motivate PV experiment in rubidium?
— Apy x Z3, 3x bigger in Cs
— But new experiment more than 3x better?



Conclusions

* Details of atomic structure needed for better PV exp.

0.243 T

* Obtain with tune-out
spectroscopy 5o |
* Other applications:
— Atomic clocks

— EDM experiments
— Precision atom trapping/quantum computing



Conclusions

* |llustrate how AMO experiment involve many pieces
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New result will be based on advances in:

atom trapping, BEC, lasers, spectroscopy, atomic theory, ... ?

Many contributions from many people
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