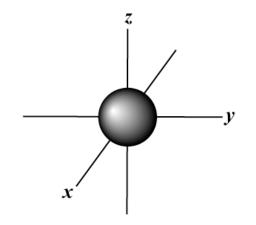

Tune-out wavelength spectroscopy:

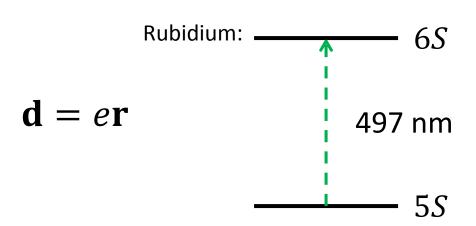
A new technique to characterize atomic structure

Cass Sackett
UVa

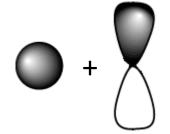

Outline

- Atomic parity violation experiments
 - why they are important but stalled
- Tune-out spectroscopy
 - what it is, how we do it
- Results
 - and comparison to theory
- Next steps
 - progress so far

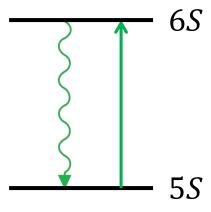
Atomic parity violation


• S states in atoms have even parity

$$\psi(-\mathbf{r}) = \psi(\mathbf{r})$$

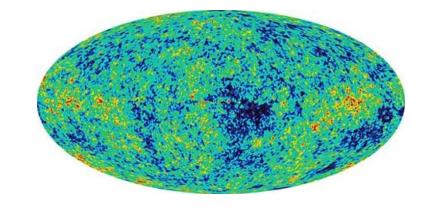

• Transition $|nS\rangle \rightarrow |n'S\rangle \sim \langle nS|\mathbf{d}|n'S\rangle = 0$

⇒ forbidden!



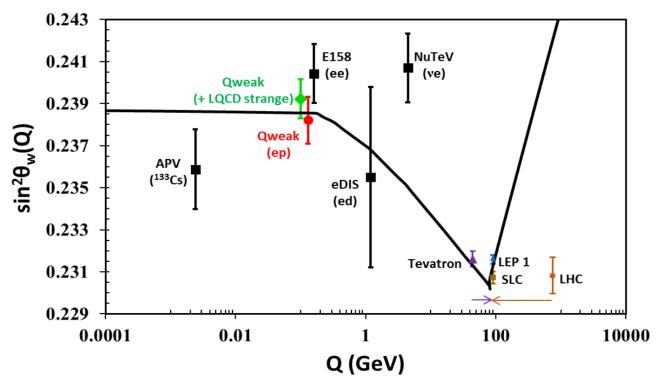
Atomic parity violation

- Electron interacts with nucleus
 - weak interaction violates parity
 - mixes P character into S states
 - allows transition!


- Measure transition rate
 - get strength of weak interaction

Fundamental symmetries

Weak interaction violates CP symmetry


- So does the universe overall
 - too much to explain
 via Standard Model

- Study symmetry violations
 - look for surprises

Weak interaction

Measure energy-dependence of weak interaction

- Steady improvements
 - Except for atomic result, from 1995

Interpreting APV

Measure transition rate, relate to weak interaction

$$\begin{split} A_{PNC} &= \sum_{n'=5}^{\infty} \left(\frac{\left\langle 6S_{1/2} \middle| d \middle| n'P_{1/2} \right\rangle \left\langle n'P_{1/2} \middle| H_{PNC} \middle| 5S_{1/2} \right\rangle}{E_{5S} - E_{n'P_{1/2}}} \right. \\ &+ \frac{\left\langle 6S_{1/2} \middle| H_{PNC} \middle| n'P_{1/2} \right\rangle \left\langle n'P_{1/2} \middle| d \middle| 5S_{1/2} \right\rangle}{E_{6S} - E_{n'P_{1/2}}} \right) \end{split}$$

 $\langle n' P_{1/2} | H_{PNC} | nS_{1/2} \rangle$: gives interaction strength

 $\langle nS_{1/2}|d|n'P_{1/2}\rangle$: dipole matrix elements

Interpreting APV

Need precise dipole matrix elements

Principle: $\langle 5S|d|5P\rangle$

measure accurately

____ 5*S*

Intermediate: $\langle 5S|d|nP \rangle$ and $\langle 6S|d|nP \rangle$ for $n \leq 12$

calculate accurately

Tail: $\langle 5S|d|nP \rangle$ and $\langle 6S|d|nP \rangle$ for n > 12

estimate

Also some additional corrections, calculated

Error contributions

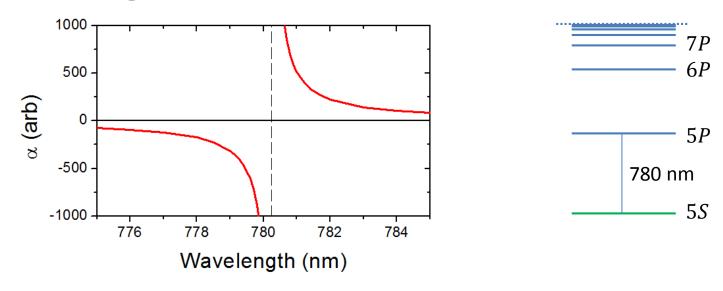
Contributions to PNC error:

Terms	Rel. contribution	Uncertainty
Principle	0.88	0.0015
Intermediate	0.08	0.0015
Tail	0.02	0.004
Other	0.01	0.001
Total	1.00	0.005

1995 experiment uncertainty: 0.0035
 Limited by theory, mostly tail contribution

How to improve?

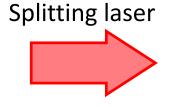
- Measure dipole matrix elements
 - especially high-n tail
- Hard to do directly
 - infinitude of states
 - difficult to calibrate measurements


Shine laser on atom

- detuned from any transition
- Get energy shift

$$U=-rac{1}{2}lpha\langle\mathcal{E}^2
angle\propto-lpha I$$
 $\qquad \qquad \alpha=\mbox{electric polarizability} \ \mathcal{E}=\mbox{electric field} \ I=\mbox{laser intensity}$

- lpha depends on laser frequency ω
 - Large for laser close to resonance



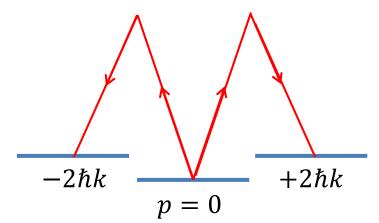
Polarizability of 5S ground state

$$\alpha(\omega) \propto \sum_{\substack{n \geq 5 \ J=1/2,3/2}} \left| \langle nP_J | \mathbf{d} | 5S_{1/2} \rangle \right|^2 \frac{E_{nJ} - E_{5S}}{\left(E_{nJ} - E_{5S} \right)^2 - \omega^2} + \alpha_{\text{core}}$$

Similar to PNC expression

- Measure α directly?
- One way: atom interferometer

Bose condensate



0.1 mm

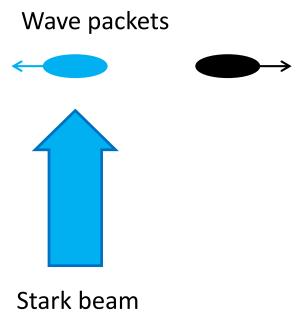
Splitting laser

Split wave function:

$$\frac{2\hbar k}{m} = 1.2 \text{ cm/s}$$

- Could measure α directly
- One way: atom interferometer

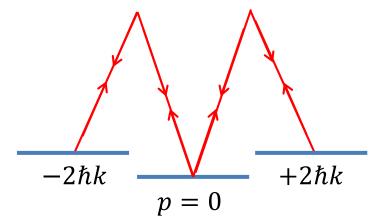
Wave packets


Let packets propagate

- Could measure α directly
- One way: atom interferometer

Shine laser on one packet

Phase shift

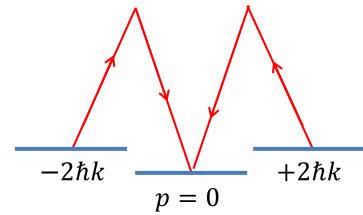

$$\phi_{
m stark} = -rac{Ut}{\hbar}$$

- Could measure α directly
- One way: atom interferometer

Reverse momentum of packets

- Could measure α directly
- One way: atom interferometer

Packets return to starting point


- Could measure α directly
- One way: atom interferometer

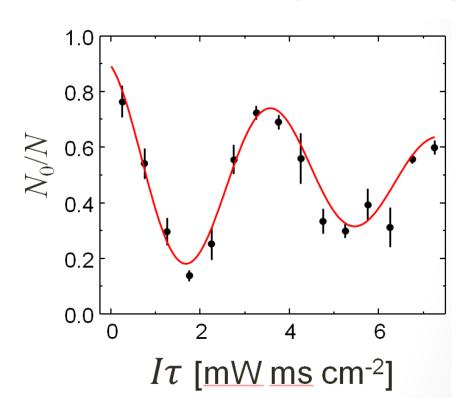
Recombine with laser:

Interference:

Fraction of atoms returned to p=0 is

$$\cos^2 \phi_{\text{stark}}$$

- Could measure α directly
- One way: atom interferometer



Let wave packets separate

Interference:

Fraction of atoms returned to p=0 is

$$\cos^2 \phi_{\text{stark}}$$

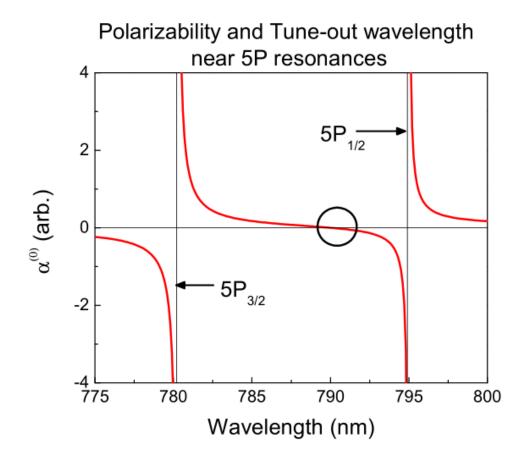
• Fit $\alpha = 5.65(16) \times 10^6$ atomic units at 780.23 nm

• 3% error, from intensity calibration

• Know $|\langle 5P|\mathbf{d}|5S\rangle|^2$ to 0.1% from lifetime

Need $\sim 10^{-5}$ precision to extract all contributions to α

Polarizability of 5S ground state

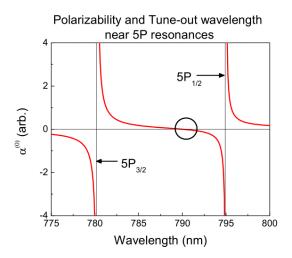

$$\alpha(\omega) \propto \alpha_{\text{core}} + \sum_{n \ge 5} |\langle nP_J | \mathbf{d} | 5S \rangle|^2 \frac{E_{nJ} - E_{5S}}{(E_{nJ} - E_{5S})^2 - \omega^2}$$

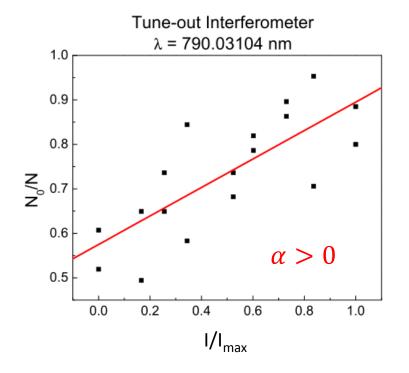
$$-----5$$

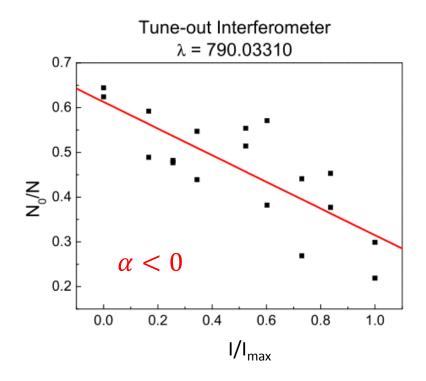
Find another method?

Tune-out measurement

In between resonances, α passes through 0

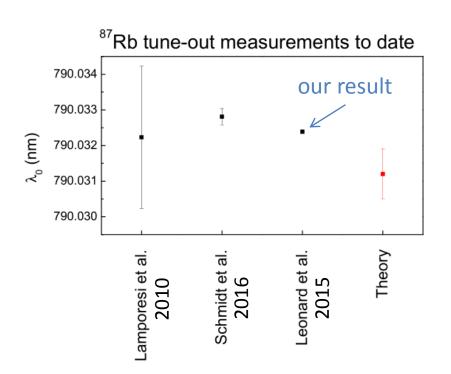


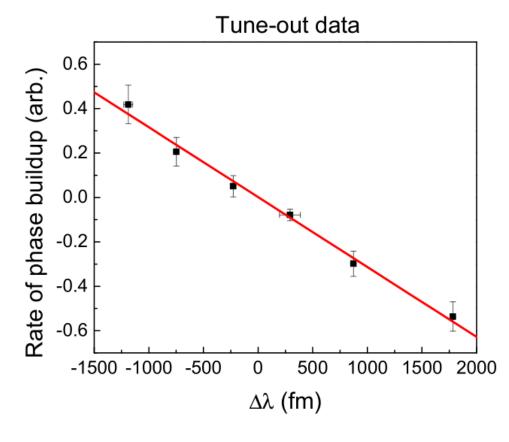

Location of zero doesn't depend on laser intensity


Call λ_0 = tune-out wavelength

Tune-out measurement

- Use same atom interferometer technique
- Measure slope

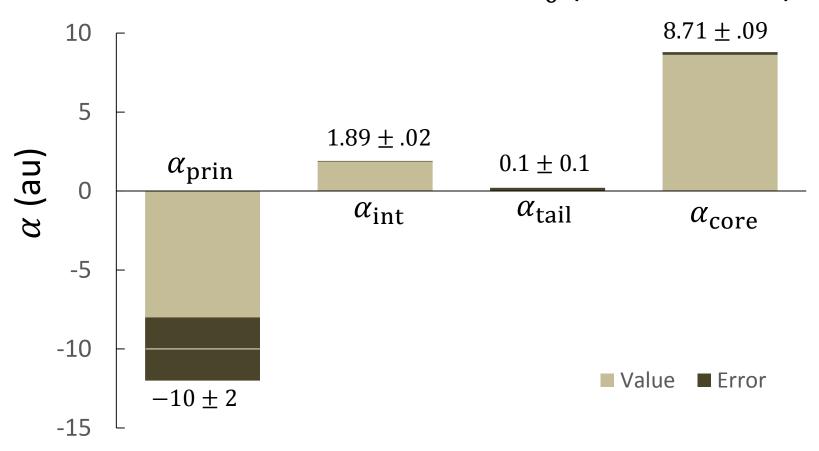




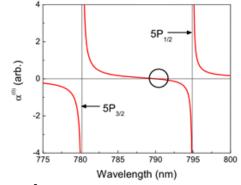
Tune-out measurement

Find $\lambda_0 = 790.032326 (32) \text{ nm}$

 $60 \times$ better than previous exp. $8 \times$ better than subsequent

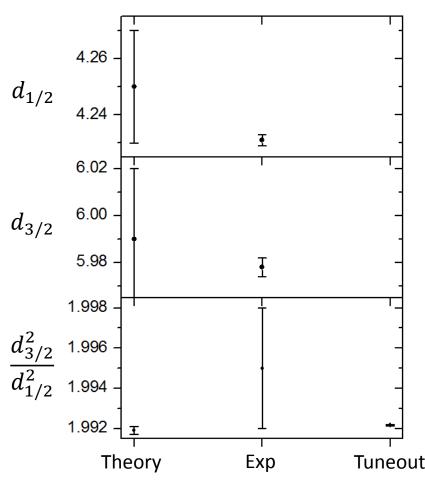

- Measurement doesn't directly give matrix elements
- Use theory to extract information

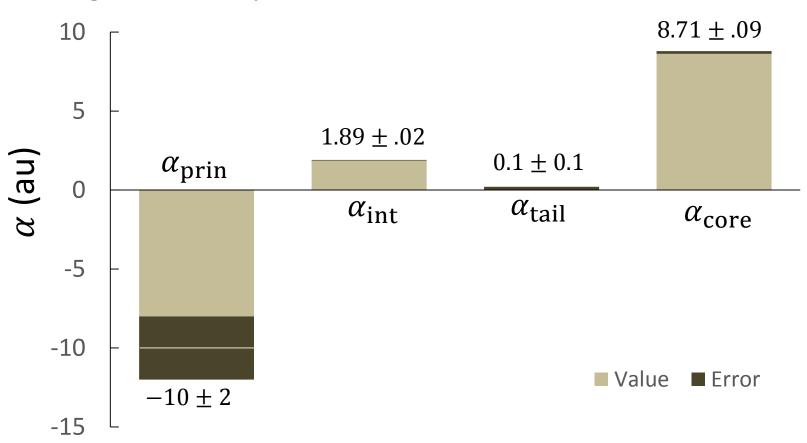
$$\alpha = \alpha_{\text{core}} + \sum_{\substack{n \ge 5 \\ J = 1/2, 3/2}} \frac{d_{nJ}^2 \omega_{nJ}}{\omega_{nJ}^2 - \omega^2} \qquad \omega_{nJ} = E_{nP_J} - E_{5S_{1/2}}$$


$$d_{nJ} = \langle nP_J | \mathbf{d} | 5S_{1/2} \rangle$$

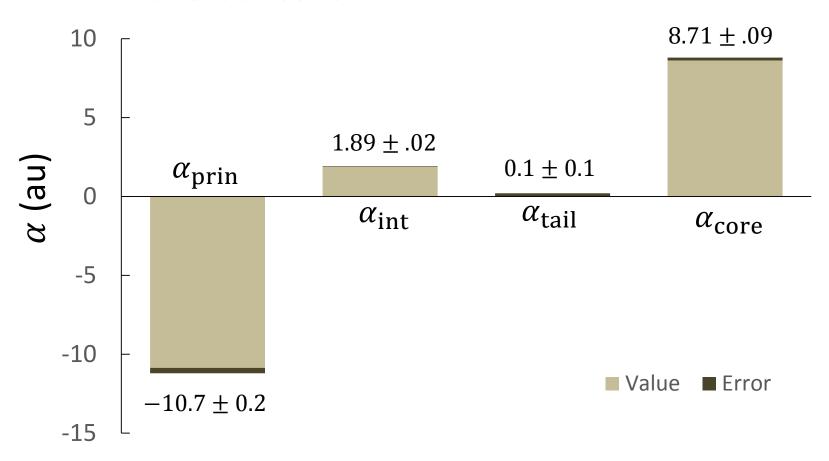
Contributions:

• Calculate contributions for $\lambda = \lambda_0$ (M. Safronova):

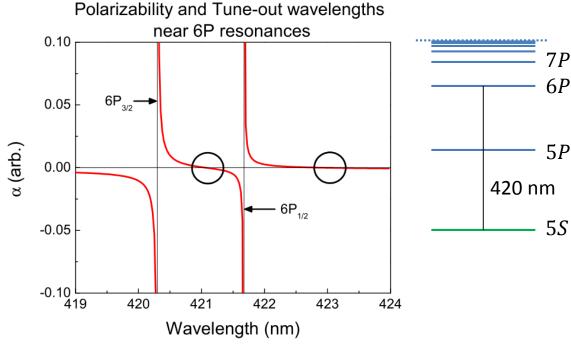

Experiment says sum = 0 ± 0.1 au


• Measurement specifies $\alpha_{\rm prin}=5P$ contributions Mainly ratio $d_{3/2}^2/d_{1/2}^2$

 Theory for ratio much more accurate than individual d's

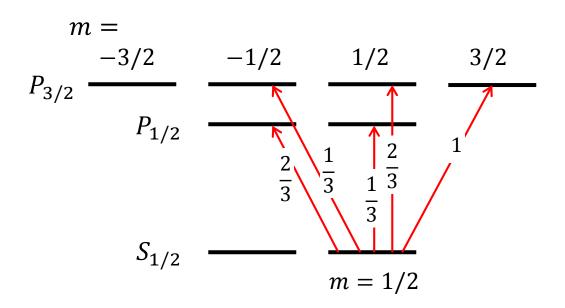

Confirmed by tune-out measurement

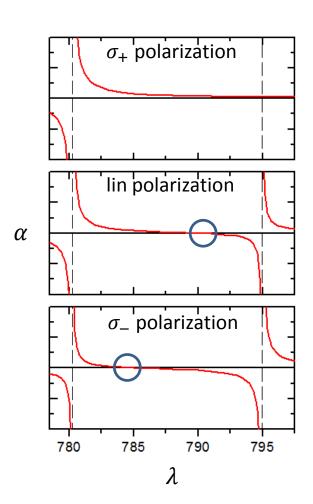
Original theory:


With tune-out constraint:

Can we get more information? Especially for tail?

More measurements


More tune-out wavelengths near other P states



- Two more data points
 - Also two new parameters $d_{6,1/2}$ and $d_{6,3/2}$
 - Not a solution

More measurements

- Another degree of freedom: light polarization
- Atoms prepared in m = 1/2
- Coupling depends on polarization

Polarization effects

Two components to polarizability:

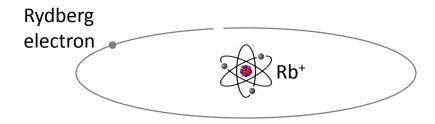
$$\alpha = \alpha^{(0)} + v\alpha^{(1)}$$
 $v =$ degree of circular polarization scalar vector

$$\alpha^{(0)} = \alpha_{\text{core}}^{(0)} + \sum_{n \ge 5} \left[\frac{d_{n3/2}^2 \omega_{n3/2}}{\omega_{n3/2}^2 - \omega^2} + \frac{d_{n_{1/2}}^2 \omega_{n1/2}}{\omega_{n1/2}^2 - \omega^2} \right]$$

$$\alpha^{(1)} = \alpha_{\text{core}}^{(1)} + \sum_{n \ge 5} \left[\frac{d_{n3/2}^2 \omega}{\omega_{n3/2}^2 - \omega^2} - \frac{2d_{n_{1/2}}^2 \omega}{\omega_{n1/2}^2 - \omega^2} \right]$$

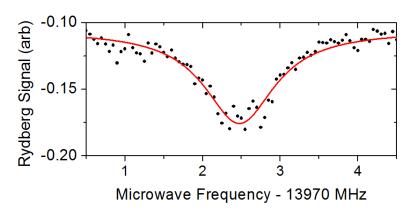
Polarization effects

- Measuring $lpha^{(0)}$ and $lpha^{(1)}$ gives two data points per λ_0
 - different dependence on matrix elements


- Measure near 5P and 6P states:
 - three tune-out wavelengths
 - six polarizabilities
 - seven unknowns (all normalized to $d_{5,1/2}$):

$$d_{5,3/2}$$
 $d_{6,3/2}$ $d_{6,1/2}$ $\alpha_{\text{core}}^{(0)}$ $\alpha_{\text{core}}^{(1)}$ $\alpha_{\text{tail}}^{(0)}$ $\alpha_{\text{tail}}^{(1)}$

• Measure $\alpha_{
m core}^{(0)}$ using Rydberg atoms

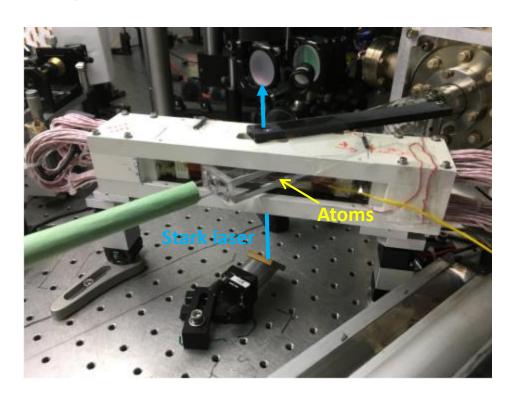

Rydberg measurement

- Electron in high-n, high-L state does not penetrate core
- Energy shifted by polarizability of core $lpha_{core}^{(0)}$

Collaborating with TFG to measure for Rb

Microwave spectroscopy on 18f to 18g transition:

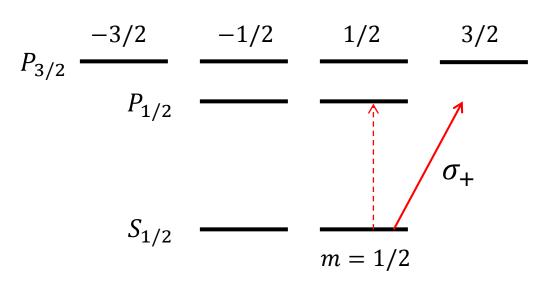
Polarization effects

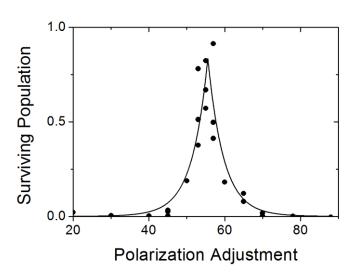

- Measuring $\alpha^{(0)}$ and $\alpha^{(1)}$ gives two data points
 - different dependence on matrix elements

- Measure near 5P and 6P states:
 - three tune-out wavelengths
 - six polarizability constraints
 - $\frac{\sin x}{\sec y = 0}$ unknowns (all normalized to $d_{5,1/2}$):

$$d_{5,3/2}$$
 $d_{6,3/2}$ $d_{6,1/2}$ $\alpha_{core}^{(0)}$ $\alpha_{core}^{(1)}$ $\alpha_{tail}^{(0)}$ $\alpha_{tail}^{(1)}$

Polarization measurements

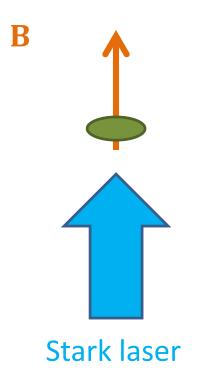

- Need precise control of light polarization $\sim 10^{-5}$
- Distorted by vacuum window $\sim 10^{-3}$



Polarization measurements

• Minimize errors using circularly polarized light: v parameter = ± 1 = max or min deviations 2nd order in distortion effect $\sim 10^{-6}$

Establish circular polarization using atoms

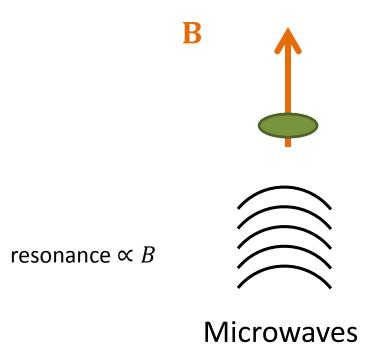

Polarization control

Apply circular polarized light to atoms

$$\alpha = \alpha^{(0)} + v\alpha^{(1)}$$

 $v \sim$ amount of circ polz

• Vary v using magnetic field


$$v = 1$$

$$v = 0$$

$$v = -1$$

Polarization control

- Need to ensure that B is behaving as expected
- Use same trick with microwave spectroscopy

Polarization control

- Need to ensure that B is behaving as expected
- Use same trick with microwave spectroscopy

60

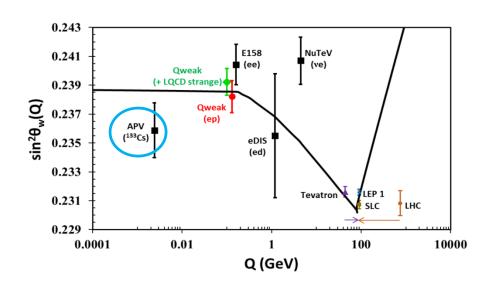
Expected results

- Completing polarization and B-field characterization
- Measure 5P states soon, then 6P states
- Monte Carlo model:

For expected meas, accuracy, get $\alpha_{\rm tail}$ to 0.01 au

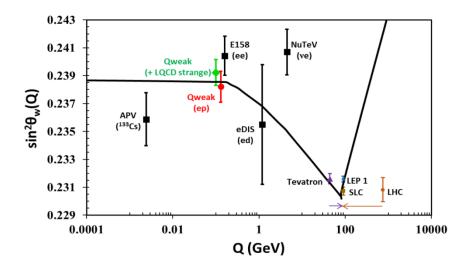
~10× better than current theory

Resolve parity violation bottleneck?


Impact

- Issues:
 - Measure with Rb, parity exp with Cs
 - Tail contribution not exactly same for α , PV exps
- Provide benchmark for theory
 - Test methods, learn what works

- Motivate PV experiment in rubidium?
 - $-A_{PV} \propto Z^3$, 3× bigger in Cs
 - But new experiment more than 3× better?


Conclusions

- Details of atomic structure needed for better PV exp.
- Obtain with tune-out spectroscopy
- Other applications:
 - Atomic clocks
 - EDM experiments
 - Precision atom trapping/quantum computing

Conclusions

Illustrate how AMO experiment involve many pieces

New result will be based on advances in:

atom trapping, BEC, lasers, spectroscopy, atomic theory, ...?

Many contributions from many people

Credits

Grad students:

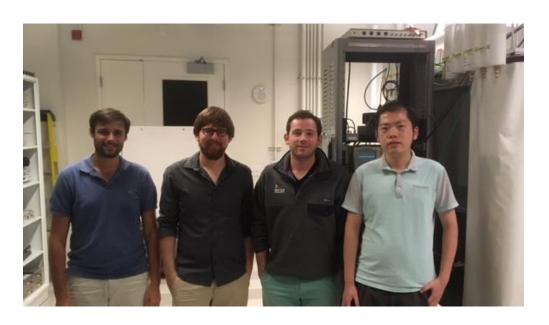
Adam Fallon

Seth Berl

Eddie Moan

Zhe Luo

Undergrad:


Yeshwanth Somu

Theory:

Marianna Safronova

Funding:

NSF, NASA

