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Classical vs. Quantum Communication

Conflict with Quantum Mechanics

• No-cloning theorem
– It is impossible to duplicate an 

unknown quantum state

• Heisenberg uncertainty principle
– It is impossible to know a quantum 

state

Alice

Bob

Classical bit: 0 or 1

~~

Error-free communication 
below channel capacity

Quantum bit:  

10 bay += 10 bay += ?
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Qubit Teleportation using Singlet States*

• Transmitter T and Receiver R share entangled qubits

• Transmitter accepts input qubit and makes 
measurements on the joint state of the input qubit and 
Transmitter’s part of the entangled qubit

• Measurement results (two classical bits) sent to Receiver

• Simple transformation at Receiver yields 

( ) 20110 RTRTTR -=y

ininin 10 ba +=Y

RRR 10 ba +=Y

* Bennett et al. “Teleporting an unknown quantum state via dual classical and 
Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).

Alice
Bob
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• Classical EM-field supports noiseless oscillation
– Phasor representation of single mode:  
– Quadrature representation of the phasor: 

• Quantum EM-field obeys uncertainty principle
– Operator representation of single mode:
– Quadrature decomposition of annihilation operator: 
– Quadrature uncertainty principle:

• Coherent state:
• OPA output modes are quadrature entangled:

and where

tiea w-

21 iaaa +=

tiea w-ˆ

,161ˆˆ 2
2

2
1 ³DD aa

21 ˆˆˆ aiaa +=

41ˆˆ 2
2

2
1 =D=D aa

( ) 4ˆˆ 2
11

saa IS =D-D ( ) ,4ˆˆ 2
22

saa IS =D+D 1<s

Analog (CV) Quantum Information

E = X cosw t - Y sinw t

t

E = X cosw t - Y sinw t

t
Y

X

E = X + i Y

Y

X

Y

X

E = X + i YE = X + i Y

CV = continuous variable;  EM = electromagnetic;  OPA = optical parametric amplifier
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Teleportation via Field Quadratures*

• Transmitter
Station

• Receiver
Station

Homodyne
Detector
q = 0

Optical
Parametric
Amplifier

Homodyne
Detector
q = p/2

y

Signal
output

Auxiliary
output

50/50 Beam Splitter

Classical data:
Send to receiver

Classical data:
Send to receiver

Light beam:
Send to receiver

Coherent-State
Source

Auxiliary Output:
From Transmitter

Classical Data:
From Transmitter

Modulated
Beam Splitter

Asymmetric
Beam Splitter:

Highly Reflecting

Teleported
State

* Braunstein and Kimble, “Teleportation of continuous quantum variables,” PRL 80, 869 (1998).
Furusawa et al., “Unconditional quantum teleportation,” Science 282, 706–709 (1998).
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Quantum Communication (QC) and
Quantum Information Processing (QIP)

QC: Sending quantum information between
two or more quantum nodes

QIP: Manipulation of qubits with quantum logic gates
Ultimate goal — a quantum computer

Quantum teleportation can be thought as wiring between 
distant quantum logic gates/nodes
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Desirable Features of an 
Entanglement Source

Entangled 
Photon-Pair

Source
H V V H-

• Should produce and send copious amounts of pairs at high rate

• Entanglement should not degrade as the pairs are distributed
Alice

Bob
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Progress Towards 
Practical Quantum Communications

• Near infrared systems based on c(2) crystals, 
bulk as well as waveguide

• Telecom band systems based on optical fibers 
&, more recently, integrated silicon-photonic 
type platforms

• Atomic ensembles for long-distance QC and 
for narrowband photons to match with atomic 
quantum memories
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Optical Fiber (Glass)

Pump Kerr Nonlinearity

Depleted
Pump

Signal
Amplified

Signal

Idler

Pump
Signal

Idlerc(3)

• Signal and idler photons are 
created in pairs

• They exhibit entanglement 
properties

At the Quantum Level:

M. Fiorentino et al., IEEE PTL 14, 983 (2002)
X. Li et al., PRL 94, 053601 (2005)

In modern 
microstructure 

fibers the 
effects can be 

rather dramatic

Near infrared 
in (~800nm)

White 
light out
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Loss line

-60

-40

-20

0

700 720 740 760 780 800

Wavelength [nm]

Po
w

er
 [d

B]

0

5

10

15

20

G
ai

n 
[d

B]

Sharping et al., Opt. Lett. 27, 1675 (2002)

Strong parametric fluorescence is easily 
observed at moderate pump power

Parametric Fluorescence in Optical Fiber
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90/10

FP

FP

FPC1

FP

FP

FPC2

LP
PBS1

signal idler

V

H

Filter
>100 dB

HWP
300 m DSF 
on a spool

lp = 1538.7 nm
tp = 5 ps Signal at

1533.9 nm

Idler at
1543.5 nm

D1

D2

Polarization 
Analyzers

QWP

Fiber-Based Source of 
Polarization-Entangled Photons
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relative angle

y = m1 -(m1-m2)/2*(cos(2*pi*...
ErrorValue

8.88458.8518m1 
10.611780.23m2 
2.6993-183.68m3 

0.0505336.2749m4 
NA6.5308Chisq
NA0.99879R

K. F. Lee, J. Chen, C. Liang, X. Li, P. L. Voss, and P. Kumar, Optics Letters 31, 1905 (2006).

High-Purity Polarization Entanglement
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Practical Source Available from 
NuCrypt LLC, Evanston, IL

Contact: kanterg@nucrypt.net 

fiberl1

l2 l*2
ADM ADM

l*1

User A User B

User C
User Dfiberl1

l2 l*2
ADM ADM

l*1

User A User B

User C
User D

OFC-2009 Postdeadline Paper PDPA3
Multi-Channel Fiber-Based Source of 

Polarization Entangled Photons with Integrated 
Alignment Signal
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Source Summary and Scaling to 10 GHz

• Pump Pulse Characteristics
– Rep rate = 50 MHz
– Typical pulse width 35 ps (about 0.15 nm transform limited bandwidth)
– Avg. photon # / pulse: 107–108 for pair production prob. 1–5% in ~100 m DSF
– Typical average power ~ 2 mW

• At 50 MHz rate, the source produces >100,000 entangled pairs / second
• Scales to >20 million entangled-pairs/s at 10 GHz pulse rate
• Required average pump power ~ 400 mW 

– Easily achievable with mode-locked lasers with amplification

• However, single-photon detection is still a bottleneck for developing 
quantum communication applications in the telecom band

– InGaAs-based APDs can be gated up to 1–2 GHz (long dead time)
– Faster superconducting detectors on the horizon, but still not available

• Optical demultiplexing is a potential near-term solution
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C

B

A

D

All-Optical Switches for Quantum Applications

o High switching contrast

o Low pump power threshold

o Low signal loss

o Quantum state preservation

Pump
Classical or Quantum

(Fredkin gate)



CPCCCPCC

Center for Photonic Communication and Computing UVa Physics Colloquium, 10/13/17,   Slide 15 McCormick School of Engineering and Applied Science

Outline

• Need for All-optical Quantum Switches
– Mux / Demux high-speed photon-pair sources 

– Heralded single-photon generation

• Ultrafast Switching of Photonic Entanglement
– Switch characterization

– Comparison with theory (no fitting parameter)

– Development of a full cross-bar switch

• Quantum Switch Applications
– Ultrafast MUX / DEMUX of quantum data channels

– Measurement of time-bin entangled qudits

• Conclusions and Future Outlook
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Quantum Switch Design based on 
Cross-Phase Modulation (XPM) in Fiber

f = 0 ( )')'(exp)()( eff dttPLitatb ò= g

f = p

Pump

Two-Color Pump Pulses in the 
C-band for Polarization 
Independent Switching

Unitary evolution in absence of Raman

a(t) b(t)
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Towards Applications in Embedded 
Fiber Telecom Infrastructure

1550 nm
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Nweke et al., Appl. Phys. Lett. 87, 174103 (2005)

Create entangled 
photon-pairs in the 

1310 nm band

1310 nm
35 THz

From C-band 
Classical Com 

Channels
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Ultrafast Entanglement Generation

Polarization 
Analyzers

D1

D2

Filter

Filter

Filter

Pv

PH

500 m Fiber
at 77 K

FM

90/10
Coupler FPC

lp = 1305 nm
tp = 100 ps (30 ps with MLL)

Circ.

Signal at
1306.5 nm

Idler at
1303.5 nm

Pol. Dep.
Delay

Pulses carved from a CW or ML laser

• 1.5 nm detuning from pump
− Reduced spontaneous Raman scattering

• Mode-locked (ML) laser allows 10 GHz Operation

F = 99.6 ± 0.15%

Hall, Altepeter, & PK, OpEx 17, 14558 (2009)
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Source Stability Testing

Hall, Altepeter, & PK, 
NJP 13, 105004 (2011)
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Switch Location for Quantum Testing
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Switch Location for Quantum Testing
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Ultrafast Switching of Photonic 
Entanglement

Design: Entangled State Fidelity:

Passively Switched
F = 99.6%

Actively Switched
F = 99.4%

Loss: Switch 0.9 dB
Circulator 0.4 dB

Switching Contrast: 200-to-1 Switching Window: 850 ps (500 m); 170 ps (100m)

Hall, Altepeter, & PK, 
NJP 13, 105004 (2011)
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Full Cross-Bar Operation: Coincidence 
Switching Windows

20-m Common Fiber
• ~40-ps Window

Oza, Huang, & PK, IEEE PTL 26, 356–359  (2014)
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Quantum Theory of Kerr Switching

q Starting Point:  A general Heisenberg equation for traveling waves

q Result: Input/output transformation with the inclusion of quantum-noise

Chromatic dispersion, 
propagation loss, …

Spontaneous 
Raman scattering

Cross and self-phase modulation, four-wave mixing … 

Coherent transformation Linear loss Ramon noise Other quantum noise

Drummond
Boivin, Kaertner, & Haus

(mid 1990’s)

Huang & Kumar,
NJP 14, 053038 (2012)
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Outline

• Need for All-optical Quantum Switches
– Mux / Demux high-speed photon-pair sources 

– Heralded single-photon generation

• Ultrafast Switching of Photonic Entanglement
– Switch characterization

– Comparison with theory (no fitting parameter)

– Development of a full cross-bar switch

• Quantum Switch Applications
– Ultrafast MUX / DEMUX of quantum data channels

– Measurement of time-bin entangled qudits

• Conclusions and Future Outlook
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Coincidence (Quantum) Eye Opening

~100ps-wide 
Quantum Eye

Channel 1 Channel 2

Hall, Altepeter, & PK, NJP 13, 105004 (2011)
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Time-Domain Multiplexed 
Quantum Data

Fidelity to |abñ+|a^b^ñ = 0.589|||| 2211 YY+YY

VVHH ||| 1 +=Y

~100 ps

VVHH ||| 2 -=Y

~100 ps
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Time-Domain Demultiplexing of Ultrafast 
Quantum Channels

Fidelity to |abñ+|a^b^ñ = 0.589|||| 2211 YY+YY

Fidelity to |abñ+|a^b^ñ = 0.986Hall, Altepeter, & PK, PRL 106, 053901 (2011)
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Outline

• Need for All-optical Quantum Switches
– Mux / Demux high-speed photon-pair sources 

– Heralded single-photon generation

• Ultrafast Switching of Photonic Entanglement
– Switch characterization

– Comparison with theory (no fitting parameter)

– Development of a full cross-bar switch

• Quantum Switch Applications
– Ultrafast MUX / DEMUX of quantum data channels

– Measurement of time-bin entangled qudits

• Conclusions and Future Outlook
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= 1551 nm

to manipulation

Murata et al, IEEE STQE 6, 1325–1331 (2000)

Time-Bin Qudits: Generation Setup



CPCCCPCC

Center for Photonic Communication and Computing UVa Physics Colloquium, 10/13/17,   Slide 31 McCormick School of Engineering and Applied Science

Thew et al., Phys. Rev. A 66, 012303 (2002)

d Number of measurement settings                            

2 9 (36)
3 81 (324)
4 324 (1296)

Signal photon Idler photon

Measurement: Qudit State Tomography
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signal or idler 
photon

to switch

Measurement: Time-Bin à Polarization
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Oza, Huang, & Kumar, IEEE Phot. Tech. Lett. 26, 356-359 (2014)

• Cross-bar optical switch that uses cross-phase modulation (XPM)

Passive Active

Manipulation: Time Bin Selection



CPCCCPCC

Center for Photonic Communication and Computing UVa Physics Colloquium, 10/13/17,   Slide 34 McCormick School of Engineering and Applied Science

Accidental coincidence subtraction 93.7 ± 0.4%
Background accidental coincidence subtraction 71.9 ± 0.3%

Minimum to violate Bell’s inequalities 71%

Nowierski, Oza, Kumar, & Kanter, PRA 94, 042328 (2016) 

Results: Ququart Entanglement
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Conclusions / Future Outlook

• XPM based switching platform for O-band entanglement

– High-fidelity switching of O-band entanglement in excellent 
agreement with theory

– Negligible in-band noise from Raman scattering of pump 

– Demonstrated very high speed operation (10-100 GHz)

– Demonstrated high-speed MUX / DEMUX of quantum data pattern

– Demonstrated high-speed time-bin qudit (d = 2, 3, 4) tomography

– Potentially very low loss (< 0.2-0.3 dB per switching cycle) 

• Short-term (10’s to 100’s µs) quantum buffers and single-
photons on demand are a practical near-term reality


