Support UVa's Physics Department! >>
  Seunghun Lee   Seunghun Lee
Professor of Physics , Experimental Condensed Matter Physics
Ph.D., 1996, Johns Hopkins

sl5eb@Virginia.EDU email   924-7959 tel 319 JBL Office Web >

Lee’s research focuses on strongly correlated materials such as non-conventional high temperature superconductors, quantum magnets, frustrated spin systems, magnetic molecules, and multiferroics. The main experimental techniques that the group uses are elastic and inelastic neutron scattering with which one can directly probe the many body response function. Neutron scattering experiments are performed at several domestic and international facilities. The group also has the in-house capability of growing high quality single crystals of transition metal oxides using a state-of-the-art image furnace.

Special Course: PAVS 4500-005, Science and Politics [Spring]

  1. Glassiness and exotic entropy scaling induced by quantum fluctuations in a disorder-free frustrated magnet”, I. Klich, S.-H. Lee, and K. Iida, Nature Communications 5:3497 doi:10.1038/ncomms4497 (2014).
  2. Coexisting order and disorder hidden in a quasi-two-dimensional frustrated magnet”, K. Iida, S.-H. Lee, and S-W. Cheong, Phys. Rev. Lett. 108, 217207 (2012).
  3. Magnetic excitations in the low-temperature ferroelectric phase of multiferroic YMn2O5 using inelastic neutron scattering”, J.- H. Kim, M. A. van der Vegte, A. Scaramucci, S. Artyukhin, J.- H. Chung, S. Park, S- W. Cheong, M. Mostovoy, and S.- H. Lee, Phys. Rev. Lett. 107, 097401 (2011)
  4. Inelastic neutron scattering study of the magnetic fluctuations in Sr2RuO4”, K. Iida, M. Kofu, N. Katayama, J. Lee, R. Kajimoto, Y. Inamura, M. Nakamura, M. Arai, Y. Yoshida, M. Fujita, K. Yamada, and S.- H. Lee, Phys. Rev. B 84, 060402 (2011)
  5. Ferromagnetically coupled Shastry-Sutherland quantum spin singlets in (CuCl)LaNb2O7”, C. Tassel et al., Phys. Rev. Lett. 105, 167205 (2010)
  6. “Zero-doping state and electron-hole asymmetry in an ambipolar cuprate”, K. Segawa et al., Nature Physics, 6, 579-583 (2010)
  7. “Universal magnetic structure of the half-magnetization phase in Cr- based spinels”, M. Matsuda et al., Phys. Rev. Lett. 104, 047201 (2010)
  8. “Spin-lattice order in frustrated ZnCr2O4”, S. Ji et al., Phys. Rev. Lett. 103, 037201 (2009)
  9. “Magnetic field-induced phase transitions in a weakly coupled s = ½ quantum spin dimer system Ba3Cr2O8”, M. Kofu et al., Phys. Rev. Lett. 102, 177204 (2009)
  10. “Hidden quantum gap state in the static stripe phase of La2-xSrxCuO4”, M. Kofu et al., Phys. Rev. Lett. 102, 047001 (2009)
  11. “Weakly coupled s = ½ quantum spin singlets in Ba3Cr2O8”, M. Kofu et al., Phys. Rev. Lett. 102, 037206 (2009)
  12. “External magnetic field effects on a distorted kagome antiferromagnet”, J.-H. Kim et al., Phys. Rev. Lett. 101, 107201 (2008)
  13. “Quantum spin liquid states in the two dimensional kagome antiferromagnets, ZnxCu4-x(OD)6Cl2”, S.-H. Lee et al., Nature Materials 6, 853 (2007)
  14. “Spin-lattice instability to a fractional magnetization state in the spinel HgCr2O4”, M. Matsuda et al., Nature Physics 3, 397 (2007)
  15. “Statics and dynamics of incommensurate spin order in a geometrically frustrated antiferromagnet CdCr2O4”, J.-H. Chung et al., Phys. Rev. Lett. 95, 247204 (2005)
  16. “Orbital and spin chains in ZnV2O4”, S.-H. Lee et al., Phys. Rev. Lett. 93, 156407 (2004)
  17. “Emergent excitations in a geometrically frustrated magnet”, S.-H. Lee et al., Nature 418, 856 (2002)

PHYS 5620: Solid State Physics [Fall]