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Scaling: Why Giants Don’t Exist 
Michael Fowler, UVa  10/12/06 
 
 
Galileo begins “Two New Sciences” with the striking observation that if two ships, one large and one 
small, have identical proportions and are constructed of the same materials, so that one is purely a 
scaled up version of the other in every respect, nevertheless the larger one will require 
proportionately more scaffolding and support on launching to prevent its breaking apart under its 
own weight.  He goes on to point out that similar considerations apply to animals, the larger ones 
being more vulnerable to stress from their own weight (page 4): 
 

Who does not know that a horse falling from a height of three or four cubits will break his 
bones, while a dog falling from the same height or a cat from a height of eight or ten cubits 
will suffer no injury?  ... and just as smaller animals are proportionately stronger and more 
robust than the larger, so also smaller plants are able to stand up better than the larger.  I am 
certain you both know that an oak two hundred cubits high would not be able to sustain its 
own branches if they were distributed as in a tree of ordinary size; and that nature cannot 
produce a horse as large as twenty ordinary horses or a giant ten times taller than an ordinary 
man unless by miracle or by greatly altering the proportions of his limbs and especially his 
bones, which would have to be considerably enlarged over the ordinary. 
 

For more of the text, click here. 
 
To see what Galileo is driving at here, consider a chandelier lighting fixture, with bulbs and shades 
on a wooden frame suspended from the middle of the ceiling by a thin rope, just sufficient to take its 
weight (taking the electrical supply wires to have negligible strength for this purpose).  Suppose you 
like the design of this particular fixture, and would like to make an exactly similar one for a room 
twice as large in every dimension.  The obvious approach is simply to double the dimensions of all 
components.  Assuming essentially all the weight is in the wooden frame, its height, length and 
breadth will all be doubled, so its volume—and hence its weight—will increase eightfold.   Now 
think about the rope between the chandelier and the ceiling.  The new rope will be eight times bigger 
than the old rope just as the wooden frame was.  But the weight-bearing capacity of a uniform rope 
does not depend on its length (unless it is so long that its own weight becomes important, which we 
take not to be the case here).  How much weight a rope of given material will bear depends on the 
cross-sectional area of the rope, which is just a count of the number of rope fibers available to carry 
the weight.  The crucial point is that if the rope has all its dimensions doubled, this cross-sectional 
area, and hence its weight-carrying capacity, is only increased fourfold.  Therefore, the doubled rope 
will not be able to hold up the doubled chandelier, the weight of which increased eightfold.  For the 
chandelier to stay up, it will be necessary to use a new rope which is considerably fatter than that 
given by just doubling the dimensions of the original rope. 
 
This same problem arises when a weight is supported by a pillar of some kind.  If enough weight is 
piled on to a stone pillar, it begins to crack and crumble.  For a uniform material, the weight it can 
carry is proportional to the cross-sectional area.  Thinking about doubling all the dimensions of a 
stone building  supported on stone pillars, we see that the weights are all increased eightfold, but the 
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supporting capacities only go up fourfold.  Obviously, there is a definite limit to how many times the 
dimensions can be doubled and we still have a stable building.   
 
As Galileo points out, this all applies to animals and humans too (page 130): “(large) increase in 
height can be accomplished only by employing a material which is harder and stronger than usual, or 
by enlarging the size of the bones, thus changing their shape until the form and appearance of the 
animals suggests a monstrosity.”   
 
He even draws a picture:  
 

 
 
Galileo understood that  you cannot have a creature looking a lot like an ordinary gorilla except that 
it’s sixty feet high.  What about Harry Potter’s friend Hagrid?  Apparently he’s twice normal height 
(according to the book) and three times normal width (although he doesn’t look it on this link).  But 
even that’s not enough extra width (if the bone width is in proportion). 
 
There is a famous essay on this point by the biologist J. B. S. Haldane, in which he talks of the more 
venerable giants in Pilgrim’s Progress, who were ten times bigger than humans in every dimension, 
so their weight would have been a thousand times larger, say eighty tons or so.  As Haldane says, 
their thighbones would only have a hundred times the cross section of a human thighbone, which is 
known to break if stressed by ten times the weight it normally carries.  So these giants would break 
their thighbones on their first step.  Or course, big creatures could get around this if they could 
evolve a stronger skeletal material, but so far this hasn’t happened.   
 
Another example of the importance of size used by Galileo comes from considering a round stone 
falling through water at its terminal speed.  What happens if we consider a stone of the same 
material and shape, but one-tenth the radius?  It falls much more slowly.  Its weight is down by a 
factor of one-thousand, but the surface area, which gives rise to the frictional retardation, is only 
down by a factor of one hundred.  Thus a fine powder in water---mud, in other words---may take 
days to settle, even though a stone of the same material will fall the same distance in a second or 
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two.  The point here is that as we look on smaller scales, gravity becomes less and less important 
compared with viscosity, or air resistance—this is why an insect is not harmed by falling from a tree. 
 
This ratio of surface area to volume has also played a crucial role in evolution, as pointed out by 
Haldane.  Almost all life is made up of cells which have quite similar oxygen requirements.  A 
microscopic creature, such as the tiny worm rotifer, absorbs oxygen over its entire surface, and the 
oxygen rapidly diffuses to all the cells.   As larger creatures evolved, if the shape stayed the same 
more or less, the surface area went down relative to the volume, so it became more difficult to 
absorb enough oxygen.  Insects, for example, have many tiny blind tubes over the surface of their 
bodies which air enters and diffuses into finer tubes to reach all parts of the body.  The limitations on 
how well air will diffuse are determined by the properties of air, and diffusion beyond a quarter-inch 
or so takes a long time, so this limits the size of insects.  Giant ants like those in the old movie 
“Them” wouldn’t be able to breathe!   
 
The evolutionary breakthrough to larger size animals came with the development of blood 
circulation as a means of distributing oxygen (and other nutrients).  Even so, for animals of our size, 
there has to be a tremendous surface area available for oxygen absorption.  This was achieved by the 
development of lungs—the lungs of an adult human have a surface area of a hundred square meters 
approximately.  Going back to the microscopic worm rotifer, it has a simple straight tube gut to 
absorb nutrients from food.  Again, if larger creatures have about the same requirements per cell, and 
the gut surface absorbs nutrients at the same rate, problems arise because the surface area of the gut 
increases more slowly than the number of cells needing to be fed as the size of the creature is 
increased.  this problem is handled by replacing the straight tube gut by one with many convolutions, 
in which also the smooth surface is replaced by one with many tiny folds to increase surface area.  
Thus many of the complications of internal human anatomy can be understood as strategies that 
have evolved for increasing available surface area per cell for oxygen and nutrient absorption 
towards what it is for simpler but much smaller creatures. 
 
On the other hand, there is some good news about being big—it makes it feasible to maintain a 
constant body temperature.  This has several advantages.  For example, it is easier to evolve efficient 
muscles if they are only required to function in a narrow range of temperatures than if they must 
perform well over a wide range of temperatures.  However, this temperature control comes at a 
price.  Warm blooded creatures (unlike insects) must devote a substantial part of their food energy 
simply to keeping warm.  For an adult human, this is a pound or two of food per day.  For a mouse, 
which has about one-twentieth the dimensions of a human, and hence twenty times the surface area 
per unit volume, the required food for maintaining the same body temperature is twenty times as 
much as a fraction of body weight, and a mouse must consume a quarter of its own body weight 
daily just to stay warm. This is why, in the arctic land of Spitzbergen, the smallest mammal is the 
fox.   
 
How high can a giant flea jump?  Suppose we know that a regular flea can jump to a height of three 
feet, and a giant flea is one hundred times larger in all dimensions, so its weight is up by a factor of a 
million.  Its amount of muscle is also up by a factor of a million, and when it jumps it rapidly 
transforms chemical energy stored in the muscle into kinetic energy, which then goes to gravitational 
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potential energy on the upward flight.  But the amount of energy stored in the muscle and the weight 
to be lifted are up by the same factor,  so we conclude that the giant flea can also jump three feet!  
We can also use this argument in reverse—a shrunken human (as in I shrunk the kids) could jump 
the same height as a normal human, again about three feet, say.  So the tiny housewife trapped in her 
kitchen sink in the movie could have just jumped out, which she’d better do fast, because she’s 
probably very hungry! 
 
Question:  from The Economist, Sept 16, 1995 page 74: "the average 16-year-old Japanese girl 
has grown 4% heavier since 1975, although she is only 1% taller." Just how much plumper does 
she look? What percent increase would keep her shape exactly the same? 
_______________________________________________________________________________ 
 
Teaching note: I began the lecture with five questions in a powerpoint presentation, to be answered using 
clickers.  The idea was to get the class thinking about how areas and volumes increase when an object 
increases in size, keeping the same proportions.  To understand how doubling the diameter of a circle 
increases its area fourfold, imagine the circle just fitting inside a square.  It’s obvious what happens for 
squares—and also that the circle takes up the same percentage of the square’s area no matter what size they 
are, provided it just fits.  Then a cube, and a ball in a cubical box.  Think first about a 2x2x2 cube made of a 
child’s cubical building blocks.  Visualize both volume and area increase from 1x1x1.  
 
The last two questions were asked later, at the appropriate point in the class.  
____________________________________________________________________________ 
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