Homework \#10 Solutions

37.9 Location of $A=$ central maximum,

Location of $B=$ first minimum.

So,

$$
\Delta y=\left[y_{\min }-y_{\max }\right]=\frac{\lambda L}{d}\left(0+\frac{1}{2}\right)-0=\frac{1}{2} \frac{\lambda L}{d}=20.0 \mathrm{~m}
$$

Thus, $d=\frac{\lambda L}{2(20.0 \mathrm{~m})}=\frac{(3.00 \mathrm{~m})(150 \mathrm{~m})}{40.0 \mathrm{~m}}=11.3 \mathrm{~m}$

The path difference between rays 1 and 2 is: $\quad \delta=d \sin \theta_{1}-d \sin \theta_{2}$
For constructive interference, this path difference must be equal to an integral number of wavelengths: $d \sin \theta_{1}-d \sin \theta_{2}=m \lambda$, or
$d\left(\sin \theta_{1}-\sin \theta_{2}\right)=m \lambda$
37.17 (a) From Equation 37.8,

$$
\begin{aligned}
& \phi=\frac{2 \pi d}{\lambda} \sin \theta=\frac{2 \pi d}{\lambda} \cdot \frac{y}{\sqrt{y^{2}+D^{2}}} \\
& \phi \approx \frac{2 \pi y d}{\lambda D}=\frac{2 \pi\left(0.850 \times 10^{-3} \mathrm{~m}\right)\left(2.50 \times 10^{-3} \mathrm{~m}\right)}{\left(600 \times 10^{-9} \mathrm{~m}\right)(2.80 \mathrm{~m})}=7.95 \mathrm{rad}
\end{aligned}
$$

(b) $\frac{I}{I_{\max }}=\frac{\cos ^{2}\left(\frac{\pi d}{\lambda} \sin \theta\right)}{\cos ^{2}\left(\frac{\pi d}{\lambda} \sin \theta_{\max }\right)}=\frac{\cos ^{2} \frac{\phi}{2}}{\cos ^{2} m \pi}$
$\frac{I}{I_{\max }}=\cos ^{2} \frac{\phi}{2}=\cos ^{2}\left(\frac{7.95 \mathrm{rad}}{2}\right)=0.453$
37.54 For Young's experiment, use $\delta=d \sin \theta=m \lambda$. Then, at the point where the two bright lines coincide,

$$
\begin{array}{ll}
d \sin \theta=m_{1} \lambda_{1}=m_{2} \lambda_{2} & \text { so } \\
\frac{\lambda_{1}}{\lambda_{2}}=\frac{540}{450}=\frac{m_{2}}{m_{1}}=\frac{6}{5} \\
\sin \theta=\frac{6 \lambda_{2}}{d}=\frac{6(450 \mathrm{~nm})}{0.150 \mathrm{~mm}}=0.0180 \\
\text { Since } \sin \theta \approx \theta \text { and } L=1.40 \mathrm{~m}, & x=\theta L=(0.0180)(1.40 \mathrm{~m})=2.52 \mathrm{~cm}
\end{array}
$$

38.2 The positions of the first-order minima are $y / L \approx \sin \theta= \pm \lambda / a$. Thus, the spacing between these two minima is $\Delta y=2(\lambda / a) L$ and the wavelength is

$$
\lambda=\left(\frac{\Delta y}{2}\right)\left(\frac{a}{L}\right)=\left(\frac{4.10 \times 10^{-3} \mathrm{~m}}{2}\right)\left(\frac{0.550 \times 10^{-3} \mathrm{~m}}{2.06 \mathrm{~m}}\right)=547 \mathrm{~nm}
$$

$38.28 \quad d=\frac{1}{800 / \mathrm{mm}}=1.25 \infty 10^{-6} \mathrm{~m}$
The blue light goes off at angles $\quad \sin \theta_{m}=\frac{m \lambda}{d}: \quad \theta_{1}=\sin ^{-1}\left(\frac{1 \infty 5.00 \infty 10^{-7} \mathrm{~m}}{1.25 \infty 10^{-6} \mathrm{~m}}\right)=23.6 \square$

$$
\begin{gathered}
\theta_{2}=\sin ^{-1}(2 \infty 0.400)=53.1 \square \\
\theta_{3}=\sin ^{-1}(3 \infty 0.400)=\text { nonexistent } \\
\theta_{1}=\sin ^{-1}\left(\frac{1 \infty 7.00 \infty 10^{-7} \mathrm{~m}}{1.25 \infty 10^{-6} \mathrm{~m}}\right)=34.1 \square \\
\theta_{2}=\sin ^{-1}(2 \infty 0.560)=\text { nonexistent }
\end{gathered}
$$

The red end of the spectrum is at

So only the first-order spectrum is complete, and it does not overlap the second-order spectrum.
38.32
$d \sin \theta=m \lambda \quad$ and, differentiating, $\quad d(\cos \theta) d \theta=m d \lambda \quad$ or $\quad d \sqrt{1-\sin ^{2} \theta} \Delta \theta \approx m \Delta \lambda$
$d \sqrt{1-m^{2} \lambda^{2} / d^{2}} \Delta \theta \approx m \Delta \lambda$ so

$$
\Delta \theta \approx \frac{\Delta \lambda}{\sqrt{d^{2} / m^{2}-\lambda^{2}}}
$$

38.42
(a) $\quad \theta_{1}=20.0 \square, \quad \theta_{2}=40.0 \square, \quad \theta_{3}=60.0 \square$
$I_{f}=I_{i} \cos ^{2}\left(\theta_{1}-0^{\circ}\right) \cos ^{2}\left(\theta_{2}-\theta_{1}\right) \cos ^{2}\left(\theta_{3}-\theta_{2}\right)$
$I_{f}=(10.0 \quad$ units $) \quad \cos ^{2}(20.0 \square) \quad \cos ^{2}(20.0 \square) \quad \cos ^{2}(20.0 \square)=$ 6.89 units

(b) $\quad \theta_{1}=0^{\circ}, \quad \theta_{2}=30.0 \square, \quad \theta_{3}=60.0 \square$
$I_{f}=(10.0$ units $) \cos ^{2}\left(0^{\circ}\right) \cos ^{2}(30.0 \square) \cos ^{2}(30.0 \square)=5.63$ units

