PHYS 232
 Homework \#7 Solutions

$$
\begin{aligned}
r=\frac{m V}{q B} \quad \text { so } \quad m & =\frac{r q B}{V}=\frac{\left(7.94 \times 10^{-3} \mathrm{~m}\right)\left(1.60 \times 10^{-19} \mathrm{C}\right)(1.80 \mathrm{~T})}{4.60 \times 10^{5} \mathrm{~m} / \mathrm{s}} \\
m & =4.97 \times 10^{-27} \mathrm{~kg}\left(\frac{1 \mathrm{u}}{1.66 \times 10^{-27} \mathrm{~kg}}\right)=2.99 \mathrm{u}
\end{aligned}
$$

The particle is singly ionized: either a tritium ion, ${ }_{1}^{3} \mathrm{H}^{+}$, or a helium ion, ${ }_{2}^{3} \mathrm{He}^{+}$
29.63 Call the length of the $\operatorname{rod} L$ and the tension in each wire alone $T / 2$. Then, at equilibrium:

$$
\begin{array}{lll}
\Sigma F_{x}=T \sin \theta-I L B \sin 90.0^{0}=0 & \text { or } & T \sin \theta=I L B \\
\Sigma F_{y}=T \cos \theta-m g=0, & \text { or } & T \cos \theta=m g
\end{array}
$$

Therefore, $\tan \theta=\frac{I L B}{m g}=\frac{I B}{(m / L) g} \quad$ or $\quad B=\frac{(m / L) g}{I} \tan \theta$

$$
B=\frac{(0.0100 \mathrm{~kg} / \mathrm{m})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)}{5.00 \mathrm{~A}} \tan \left(45.0^{\circ}\right)=19.6 \mathrm{mT}
$$

We can think of the total magnetic field as the superposition of the field due to the long straight wire (having magnitude $\mu_{0} I / 2 \pi R$ and directed into the page) and the field due to the circular loop (having magnitude $\mu_{0} I / 2 R$ and directed into the page). The resultant magnetic field is:

$$
B=\left(1+\frac{1}{\pi}\right) \frac{\mu_{0} I}{2 R}=\left(1+\frac{1}{\pi}\right) \frac{\left(4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}\right)(7.00 \mathrm{~A})}{2(0.100 \mathrm{~m})}=5.80 \times 10^{-5} \mathrm{~T}
$$

or $\quad \mathrm{B}=58.0 \mu \mathrm{~T} \quad$ (directed into the page)
30.21 From Ampère's law, the magnetic field at point a is given by $B_{a}=\mu_{0} I_{a} / 2 \pi r_{a}$, where I_{a} is the net current flowing through the area of the circle of radius r_{a}. In this case, $I_{a}=1.00 \mathrm{~A}$ out of the page (the current in the inner conductor), so

$$
B_{a}=\frac{\left(4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}\right)(1.00 \mathrm{~A})}{2 \pi\left(1.00 \times 10^{-3} \mathrm{~m}\right)}=200 \mu \mathrm{~T} \text { toward top of page }
$$

Similarly at point $b: \quad B_{b}=\frac{\mu_{0} I_{b}}{2 \pi r_{b}}$, where I_{b} is the net current flowing through the area of the circle having radius r_{b}.

Taking out of the page as positive, $I_{b}=1.00 \mathrm{~A}-3.00 \mathrm{~A}=-2.00 \mathrm{~A}$, or $I_{b}=2.00 \mathrm{~A}$ into the page. Therefore,

$$
B_{b}=\frac{\left(4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}\right)(2.00 \mathrm{~A})}{2 \pi\left(3.00 \times 10^{-3} \mathrm{~m}\right)}=133 \mu \mathrm{~T} \text { toward bottom of page }
$$

30.66 The central wire creates field $\mathbf{B}=\mu_{0} I_{1} / 2 \pi R$ counterclockwise. The curved portions of the loop feels no force since $1 \times \mathbf{B}=0$ there. The straight portions both feel $I 1 \times \mathbf{B}$ forces to the right, amounting to

$$
\mathbf{F}_{B}=I_{2} 2 L \frac{\mu_{0} I_{1}}{2 \pi R}=\frac{\mu_{0} I_{1} I_{2} L}{\pi R} \text { to the right }
$$

