Proportional to the number of electric field lines penetrating a surface.

Serway. Physics tor Scientists and Engineers, $5 / \mathrm{e}$
Figure 24.1

Serway, Physics for Scientists and Engineers, $5 / \mathrm{e}$
Figure 24.3

$$
\Phi_{E}=E A \cos \theta
$$

$$
\Phi_{E}=\mathrm{E} \cdot \mathrm{~A}
$$

$$
\Phi_{E}=\oint \mathrm{E} \cdot d \mathrm{~A}
$$

Serway. Physics for Scientists and Engineers, 5/e Figure 24.4

Gauss's Law

$$
k_{e}=\frac{1}{4 \pi \epsilon_{0}}
$$

$$
\begin{gathered}
\mathbf{E} \cdot \Delta \mathbf{A}=E \Delta A \\
\Phi_{E}=\oint \mathbf{E} \cdot d \mathbf{A}=\oint E d A=E \oint d A \\
\Phi_{E}=\frac{q}{\epsilon_{0}}
\end{gathered}
$$

The net flux through any closed surface surrounding a point charge q is given by q / ϵ_{0}.

Gauss's Law

$$
\Phi_{E}=\oint \mathbf{E} \cdot d \mathbf{A}=\frac{q_{i n}}{\epsilon_{0}}
$$

Example 24.3:

Serway, Physics for Scientists and Engineers, 5/e
Figure 24.6
What happens to the total flux through The surface if:
a. The charge is tripled
b. The radius of the sphere is doubled
c. The surface is changed to a cube
d. The charge is moved to a another location inside the surface

Application of Gauss's Law

Determine a surface such that:
1.Value of the electric field is constant over the surface
2. The dot product between \mathbf{E} and $d \mathbf{A}$ can be expressed as a simple algebraic product because \mathbf{E} and dA are parallel
3. The dot product is zero because \mathbf{E} and $\mathrm{d} \mathbf{A}$ are perpendicular
4. The field is zero over the surface.

Example 24.4: Electric field due to a point charge

$$
\begin{aligned}
\oint E d A & =E \oint d A=E\left(4 \pi r^{2}\right)=\frac{q_{i n}}{\epsilon_{0}} \\
E & =\frac{q}{4 \pi \epsilon_{0} r^{2}}=k_{e} \frac{q}{r^{2}}
\end{aligned}
$$

Example 24.5: An insulating solid sphere of radius a carries a total charge Q. calculate:
a. The magnitude of the electric filed at a point outside the sphere
b. The magnitude of the electric filed at a point inside the sphere

$$
q_{i n}=\rho V^{\prime}=\rho\left(\frac{4}{3} \pi r^{3}\right)
$$

Harcourt, Inc.

Example 24.6: The electric field due to a thin spherical shell

Harcourt, Inc.

Example 24.7: Find the electric field a distance r from a line of positive charge of infinite length and constant linear charge density λ

Example 24.8: Find the electric field due to a non-conducting, infinite plane of positive charge with uniform surface charge density σ

Serway, Physics for Scientists and Engineers, 5/e
Figure 24.15

Conductors in Electrostatic equilibrium

Serway, Physics for Scientists and Engineers, 5/e Figure 24.16

Serway, Physics for Scientists and Engineers, 5/e Figure 24.17

Gaussian

Har
surface
Serway, Physics for Scientists and Engineers, 5/e
Figure 24.18

