PHYS 232
 Optional Problem Set Solutions

24.28
(a) $E=\frac{2 k_{e} \lambda}{r}$
$3.60 \times 10^{4}=\frac{2\left(8.99 \times 10^{9}\right)(Q / 2.40)}{(0.190)}$
$Q=+9.13 \propto 10^{-7} \mathrm{C}=+913 \mathrm{nC}$
(b) $E=0$
25.58 From Example 25.5, the potential created by the ring at the electron's starting point is

$$
V_{i}=\frac{k_{e} Q}{\sqrt{x_{i}^{2}+a^{2}}}=\frac{k_{e}(2 \pi \lambda a)}{\sqrt{x_{i}^{2}+a^{2}}}
$$

while at the center, it is $\quad V_{f}=2 \pi k_{e} \lambda$. From conservation of energy,

$$
0+\left(-e V_{i}\right)=\frac{1}{2} m_{e} v_{f}^{2}+\left(-e V_{f}\right)
$$

$$
v_{f}^{2}=\frac{2 e}{m_{e}}\left(V_{f}-V_{i}\right)=\frac{4 \pi e k_{e} \lambda}{m_{e}}\left(1-\frac{a}{\sqrt{x_{i}^{2}+a^{2}}}\right)
$$

$$
v_{f}^{2}=\frac{4 \pi\left(1.60 \times 10^{-19}\right)\left(8.99 \times 10^{9}\right)\left(1.00 \times 10^{-7}\right)}{9.11 \times 10^{-31}}\left(1-\frac{0.200}{\sqrt{(0.100)^{2}+(0.200)^{2}}}\right)
$$

$$
v_{f}=1.45 \times 10^{7} \mathrm{~m} / \mathrm{s}
$$

$26.28 \quad C_{s}=\left(\frac{1}{5.00}+\frac{1}{10.0}\right)^{-1}=3.33 \mu \mathrm{~F}$
$C_{p 1}=2(3.33)+2.00=8.66 \mu \mathrm{~F}$
$C_{p 2}=2(10.0)=20.0 \mu \mathrm{~F}$
$C_{\mathrm{eq}}=\left(\frac{1}{8.66}+\frac{1}{20.0}\right)^{-1}=6.04 \mu \mathrm{~F}$

$$
\begin{aligned}
& Q_{\mathrm{eq}}=C_{\mathrm{eq}}(\Delta V)=\left(6.04 \times 10^{-6} \mathrm{~F}\right)(60.0 \mathrm{~V})=3.62 \times 10^{-4} \mathrm{C} \\
& Q_{p 1}=Q_{\mathrm{eq}}, \text { so } \quad \Delta V_{p 1}=\frac{Q_{\mathrm{eq}}}{C_{p 1}}=\frac{3.62 \times 10^{-4} \mathrm{C}}{8.66 \times 10^{-6} \mathrm{~F}}=41.8 \mathrm{~V} \\
& Q_{3}=C_{3}\left(\Delta V_{p 1}\right)=\left(2.00 \times 10^{-6} \mathrm{~F}\right)(41.8 \mathrm{~V})=83.6 \mu \mathrm{C}
\end{aligned}
$$

27.58 $\quad 2$ wires: $\quad \ell=100 \mathrm{~m}$

$$
R=\frac{0.108 \Omega}{300 \mathrm{~m}}(100 \mathrm{~m})=0.0360 \Omega
$$

(a) $(\Delta V)_{\text {home }}=(\Delta V)_{\text {line }}-I R=120-(110)(0.0360)=116 \mathrm{~V}$
(b) $\mathrm{P}=I(\Delta V)=(110 \mathrm{~A})(116 \mathrm{~V})=12.8 \mathrm{~kW}$
(c) $\mathrm{P}_{\text {wires }}=I^{2} R=(110 \mathrm{~A})^{2}(0.0360 \Omega)=436 \mathrm{~W}$
28.24 Name the currents as shown in the figure to the right. Then $w+x+z=y$. Loop equations are
$-200 w-40.0+80.0 x=0$
$-80.0 x+40.0+360-20.0 y=0$
$+360-20.0 y-70.0 z+80.0=0$
Eliminate y by substitution. $\quad\left\{\begin{array}{l}x=2.50 w+0.500 \\ 400-100 x-20.0 w-20.0 z=0 \\ 440-20.0 w-20.0 x-90.0 z=0\end{array}\right.$

Eliminate x :

$$
\left\{\begin{array}{l}
350-270 w-20.0 z=0 \\
430-70.0 w-90.0 z=0
\end{array}\right.
$$

Eliminate $z=17.5-13.5 w$ to obtain $430-70.0 w-1575+1215 w=0$

$$
\begin{aligned}
& w=70.0 / 70.0=1.00 \mathrm{~A} \text { upward in } 200 \Omega \\
& z=4.00 \mathrm{~A} \text { upward in } 70.0 \Omega \\
& x=3.00 \mathrm{~A} \text { upward in } 80.0 \Omega \\
& y=8.00 \text { A downward in } 20.0 \Omega
\end{aligned}
$$

Now
and for the 200Ω,

$$
\Delta V=I R=(1.00 \mathrm{~A})(200 \Omega)=200 \mathrm{~V}
$$

30.22 (a) In $B=\frac{\mu_{0} I}{2 \pi r}$, the field will be one-tenth as large at a ten-times larger distance: 400 cm
(b) $\mathbf{B}=\frac{\mu_{0} I}{2 \pi r_{1}} \mathbf{k}+\frac{\mu_{0} I}{2 \pi r_{2}}(-\mathbf{k}) \quad$ so $\quad B=\frac{4 \pi \times 10^{7} T \cdot m(2.00 A)}{2 p A}\left(\frac{1}{0.3985 m} \frac{1}{0.4015 m}\right)=7.50 \mathrm{nT}$
(c) Call r the distance from cord center to field point and $2 d=3.00 \mathrm{~mm}$ the distance between conductors.

$$
\begin{aligned}
& B=\frac{\mu_{0} I}{2 \pi}\left(\frac{1}{r-d}-\frac{1}{r+d}\right)=\frac{\mu_{0} I}{2 \pi} \frac{2 d}{r^{2}-d^{2}} \\
& 7.50 \times 10^{-10} \mathrm{~T}=\left(2.00 \times 10^{7} \frac{T \cdot m}{A}\right)(2.00 \mathrm{~A}) \frac{\left(3.00 \times 10^{3} \mathrm{~m}\right)}{r^{2} 2.25 \times 10^{6} m^{2}} \quad \text { so } \quad r=1.26 \mathrm{~m}
\end{aligned}
$$

The field of the two-conductor cord is weak to start with and falls off rapidly with distance.
(d) The cable creates zero field at exterior points, since a loop in Ampère's law encloses zero total current. Shall we sell coaxial-cable power cords to people who worry about biological damage from weak magnetic fields?
$31.34 \quad \mathcal{E}=\frac{d \Phi_{B}}{d t}=\pi r^{2}\left(\frac{d B}{d t}\right)=\oint \mathbf{E} \cdot d 1$

$$
\begin{array}{ll}
E(2 \pi R)=\pi r^{2} \frac{d B}{d t}, & \text { or } \\
B=\mu_{0} n I & \left.\frac{d B}{d t}=\mu_{0} n \frac{d I}{2 \pi R}\right) \frac{d B}{d t} \\
I=3.00 e^{0.200 t} & \frac{d I}{d t}=0.600 e^{0.200 t}
\end{array}
$$

At $t=10.0 \mathrm{~s}, \quad E=\frac{\pi r^{2}}{2 \pi R}\left(\mu_{0} n\right)\left(0.600 e^{0.200 t}\right)$
becomes $E=\frac{(0.0200 \mathrm{~m})^{2}}{2(0.0500 \mathrm{~m})}\left(4 \pi \times 10^{-7} \mathrm{~N} / \mathrm{A}^{2}\right)(1000$ turns $/ \mathrm{m})(0.600) e^{2.00}=2.23 \times 10^{-5} \mathrm{~N} / \mathrm{C}$
$37.62 \lambda=\frac{c}{f}=\frac{3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}}{1.50 \times 10^{6} \mathrm{~Hz}}=200 \mathrm{~m}$
For destructive interference, the path difference is one-half wavelength.
Thus,

$$
\begin{aligned}
& \frac{\lambda}{2}=100 \mathrm{~m}=x+\sqrt{x^{2}+\left(2.00 \times 10^{4} \mathrm{~m}\right)^{2}}-2.00 \times 10^{4} \mathrm{~m}, \\
& 2.01 \times 10^{4} \mathrm{~m}-x=\sqrt{x^{2}+\left(2.00 \times 10^{4} \mathrm{~m}\right)^{2}}
\end{aligned}
$$

Squaring and solving,

$$
x=99.8 \mathrm{~m}
$$

38.10 (a) Double-slit interference maxima are at angles given by $d \sin \theta=m \lambda$.

For $m=0$,

$$
\theta_{0}=0^{\circ}
$$

For $m=1,(2.80 \mu \mathrm{~m}) \sin \theta=1(0.5015 \mu \mathrm{~m}): \quad \theta_{1}=\sin ^{-1}(0.179)=10.3^{\circ}$

Similarly, for $m=2,3,4,5$ and 6 ,

$$
\begin{aligned}
& \theta_{2}=21.0^{\circ}, \theta_{3}=32.5^{\circ}, \theta_{4}=45.8^{\circ}, \\
& \theta_{5}=63.6^{\circ}, \text { and } \theta_{6}=\sin ^{-1}(1.07)=\text { nonexistent } .
\end{aligned}
$$

Thus, there are

$$
5+5+1=11 \text { directions for interference maxima. }
$$

(b) We check for missing orders by looking for single-slit diffraction minima, at $a \sin \theta=m \lambda$.

For $m=1$, $(0.700 \mu \mathrm{~m}) \sin \theta=1(0.5015 \mu \mathrm{~m}) \quad$ and $\quad \theta_{1}=45.8^{\circ}$.

Thus, there is no bright fringe at this angle. There are only nine bright fringes, at $\theta=0^{\circ}, \pm 10.3^{\circ}, \pm 21.0^{\circ}, \pm 32.5^{\circ}$, and $\pm 63.6^{\circ}$.
(c) $I=I_{\max }\left[\frac{\sin (\pi a \sin \theta / \lambda)}{\pi a \sin \theta / \lambda}\right]^{2}$

At $\theta=0^{\circ}, \quad \frac{\sin \theta}{\theta} \rightarrow 1 \quad$ and $\quad \frac{I}{I_{\max }} \rightarrow 1.00$
At $\theta=10.3^{\circ}, \quad \frac{\pi a \sin \theta}{\lambda}=\frac{\pi(0.700 \mu \mathrm{~m}) \sin 10.3^{\circ}}{0.5015 \mu \mathrm{~m}}=0.785 \mathrm{rad}=45.0^{\circ}$

$$
\frac{I}{I_{\max }}=\left\lceil\frac{\left\lceil\sin 45.0^{\circ}\right.}{0.785}\right]^{2}=0.811
$$

Similarly, at $\theta=21.0^{\circ}, \frac{\pi a \sin \theta}{\lambda}=1.57 \mathrm{rad}=90.0^{\circ} \quad$ and $\quad \frac{I}{I_{\max }}=0.405$
At $\theta=32.5^{\circ}, \quad \frac{\pi a \sin \theta}{\lambda}=2.36 \mathrm{rad}=135^{\circ} \quad$ and $\quad \frac{I}{I_{\max }}=0.0901$
At $\theta=63.6^{\circ}, \quad \frac{\pi a \sin \theta}{\lambda}=3.93 \mathrm{rad}=225^{\circ} \quad$ and $\quad \frac{I}{I_{\max }}=0.0324$
39.8 The observed length of an object moving at speed v is $L=L_{p} \sqrt{1-v^{2} / c^{2}}$ with L_{p} as the proper length. For the two ships, we know $L_{2}=L_{1}, L_{2 p}=3 L_{1 p}$, and $v_{1}=0.350 c$

Thus,

$$
L_{2}^{2}=L_{1}^{2} \quad \text { and } \quad 9 L_{1 p}^{2}\left(1-\frac{v_{2}^{2}}{c^{2}}\right)=L_{1 p}^{2}\left[1-(0.350)^{2}\right]
$$

giving

$$
9-9 \frac{v_{2}^{2}}{c^{2}}=0.878, \quad \text { or } \quad v_{2}=0.950 c
$$

