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Homework #8 Solutions
Due: Friday October 30, 1998

1 (Tipler 26-47). (a) The flux through the loop is Φ = B · (effective area) = B ·Nab cos θ, where θ = ωt is
the angle between the loop normal and the magnetic field B. From Faraday’s law,

E = −dΦ
dt

= − d

dt
(NBab cosωt) = NBabω sin ωt. (1)

Note that the problem does not give you an explicit for for θ, which could just as easily have been defined as
ωt− δ, with δ as any angle you wish to choose. Hence the “sin” in the derived equation could just as easily
been “± sin” or “± cos”.
(b) The amplitude of the emf out of this generator is E0 = NBabω. To have E0 = 110 V, with the given values
for the other parameters, we must have an angular frequency ω = E0/NBab = (110)/[(1000)(2)(0.01)(0.02)] =
275 rad/s.

2 (Tipler 26-58). There are a large number of ways to solve this problem. One (probably) very bad way
is to look at the total magnetic flux Φ1 + Φ2. Unfortunately, since the book mentions flux explicitly, you
may have been given the impression that this quantity is in some way a key to the solution you seek. The
statement “. . . none of the flux from either passes through the other...” is meant to signify that the flux
through inductor one (for example) is not given by

Φ1 = L1I1 + MI2, (2)

which would mean that there is some mutual inductance between the two components. So, because we
may write Φ1 = L1I1 and Φ2 = L2I2, we can also write that the voltage drop across inductor one is
∆V1 = L1(dI1/dt), and similarly for the second inductor. As it so happens, when the inductors are in
parallel, their voltage drops are the same (Kirchoff’s first law):

∆V = L1
dI1

dt
= L2

dI2

dt
. (3)

We would define an effective inductance Leff using the relation

Leff = ∆V

(
dI

dt

)−1

, or
1

Leff
=

1
∆V

dI

dt
, (4)

where I = I1 + I2 is the total current that goes into our two-inductor system. From Kirchoff’s second law,
I = I1 + I2, and so,

dI

dt
=

dI1

dt
+

dI2

dt
. (5)

We can use eq. (3) to substitute for the dIk/dt terms:

1
Leff

=
1

∆V

(
dI1

dt
+

dI2

dt

)
=

1
∆V

(
∆V

L1
+

∆V

L2

)
=

1
L1

+
1
L2

. (6)

3 (Tipler 26-67).

`
E

x

(a) The crossbar has a current that goes down the page, when the battery is attached as described in the
problem. A current I flows through the bar, and therefore it will feel a force F = I`B that is to the right,
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for a magnetic field B into the page. The problem now is, of course, to find the current that flows. Normally
(no magnetic field), the current would simply be E/R. The problem is that since the circuit is physically
expanding, it’s magnetic flux is changing and therefore, by Faraday’s law, an emf is induced. The size of
this “back”-emf, called “back” because it will always oppose the emf applied, is given by

|Eback| = dΦ
dt

=
d

dt
(B`x) = B`

dx

dt
= B`v, (7)

where x is the displacement of the crossbar bar (the placement of the origin turns out to not be very
important), and v = dx/dt is the velocity. The total emf is therefore E − |Eback| = E −B`v, and the current
that flows is I = (E −B`v)/R. The force on the rod is therefore

F = I`B =
(E −B`v)`B

R
, (8)

and Newton’s second law, F = ma = m(dv/dt), is written

m
dv

dt
=

(E −B`v)`B
R

. (9)

(b) The terminal velocity vt is defined as the point at which (dv/dt)v=vt = 0. From above,

0 =
(E −B`vt)`B

R
⇒ vt =

E
B`

. (10)

(c) The current when v = vt is given by I = (E −B`vt)/R = 0. This can be done without resort to algebra
if you remember that F = I`B and that the force F = 0 because it reached terminal velocity, so we must
have I = 0.

Now is a good time to look back at a similar problem you had in chapter 24 and ask yourself how this
problem is different.

4 (Tipler 26-80).

(a) The setup of this problem is very similar to that of Example 25-10 in Tipler. You should know that
the symmetry of the problem is such that the magnitude of the B field is constant along circles that are
concentric with the cable and have surface normals along the axis of the cable. Three examples of such
curves are drawn (dotted) in the accompanying figure. In addition, the direction of the B field at all points
along that circle is tangent to it, and has a sense given by the right hand rule. We therefore have that
B · d` = B d` at all points along the curve. It is also for that reason that we choose our curves to travel
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clockwise (as drawn), since the current inside is into the page. With all of these preliminaries out of the way,
we can make the seemingly simple statement that one side of Ampère’s law is given by

∮
C

B · d` = B 2πr. (11)

Now the right hand side of Ampère’s law is multivalued:

µ0IC = µ0




0 r < r1

I r1 < r < r2

I + (−I) = 0 r > r2

. (12)

Note that in the last line above, IC has two parts because for r > r2, C encloses both currents. The inner
current goes into the page, which is the same direction as the surface normal of C (which is given by the
right hand rule), so it counts as positive. The outer current is coming out of the page, is anti-parallel to the
surface normal of C, and therefore counts as negative. Putting all of Ampère’s law together, we get

B =




0 r < r1

µ0I

2πr
r1 < r < r2

0 r > r2

. (13)

(b) The magnetic energy density um (written ηm in Tipler) is given by

um =
B2

2µ0
=

1
2µ0

(
µ0I

2πr

)2

=
µ0I

2

8π2r2
, (14)

for the region between the conductors (r1 < r < r2).
(c) The total energy in the magnetic field between the conductors is

Um =
∫

V

umdV =
∫ r2

r1

um(r) (`2πr dr) =
µ0I

2`

4π

∫ r2

r1

dr

r
=

µ0I
2`

4π
ln

r2

r1
. (15)

(d) We can use the fact that for an inductor, Um = LI2/2 to obtain the inductance of this coaxial cable:

Um =
1
2
LI2 =

µ0I
2`

4π
ln

r2

r1
⇒ L

`
=

µ0

2π
ln

r2

r1
. (16)

This example isn’t really that artificial. Inductance, as it is formally defined, can be difficult to evaluate,
and so seemingly roundabout techniques such as this are often employed to find the desired expressions.

5 (Tipler 27-20). (a) The field inside a ferromagnetic material such as iron is Km times that of the applied
field Bapp. The solenoid is the source for the applied field here, and is µ0nI. The field in the material is
therefore B = Kmµ0nI, and the flux Φ = (field)(effective area) = (Kmµ0nI)(n`A). Since Φ = LI, we have
L = Kmµ0n

2A`.
(b) The energy in the solenoid is

Um =
1
2
LI2 =

1
2
(Kmµ0n

2A`)
(

B

Kmµ0n

)2

=
B2A`

2Kmµ0
, (17)

where we have written the current in terms of the magnetic field it induces.
(c) The energy density um ≡ Um/(volume) = Um/(A`) = B2/2Kmµ0 = B2/2µ, where µ ≡ Kmµ0.


