G ravitation and Cosmology

Lecture 2:

Lorentz-invariant quantities

As we saw last time, the Lorentz transformation for our special case is

$$
\left(\begin{array}{l}
t^{\prime} \tag{2.1}\\
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)=\left(\begin{array}{c}
\gamma\left(t-v x / c^{2}\right) \\
\gamma(x-v t) \\
y \\
z
\end{array}\right)
$$

where $\gamma=\frac{1}{\sqrt{1-v^{2} / c^{2}}}$.
In general, the transformation from S to S^{\prime} can be written as the product of a rotation and a boost. A boost is a transformation that applies to two systems with their axes aligned, moving with relative velocity \vec{V}. The general form of the transformation coefficients is

$$
\Lambda^{\mu}{ }_{v}=\left(\begin{array}{cccc}
\gamma & -\gamma v^{1} / c & -\gamma v^{2} / c & -\gamma v^{2} / c \tag{2.2}\\
-\gamma v^{1} / c & 1+(\gamma-1) \hat{V}^{1} \hat{V}^{1} & (\gamma-1) \hat{V}^{1} \hat{V}^{2} & (\gamma-1) \hat{V}^{1} \hat{V}^{3} \\
-\gamma v^{2} / c & (\gamma-1) \hat{V}^{2} \hat{V}^{1} & 1+(\gamma-1) \hat{V}^{2} \hat{V}^{2} & (\gamma-1) \hat{V}^{2} \hat{V}^{3} \\
-\gamma v^{3} / c & (\gamma-1) \hat{V}^{3} \hat{V}^{1} & (\gamma-1) \hat{V}^{3} \hat{V}^{2} & 1+(\gamma-1) \hat{V}^{3} \hat{V}^{3}
\end{array}\right)
$$

Now, it is easy to see that the inverse transformation to $\Lambda^{\mu}{ }_{v}(\vec{V})$ is $\Lambda^{\mu}{ }_{v}(-\vec{V})$. That is,

$$
\begin{equation*}
\sum_{\mathrm{K}=0} \Lambda^{\mu}{ }_{\mathrm{K}}(\overrightarrow{\mathrm{~V}}) \Lambda_{\mathrm{v}}^{\mathrm{K}}(-\vec{\nabla})=\delta^{\mu}{ }_{v} \tag{2.3}
\end{equation*}
$$

(We will now drop the explicit Σ representing summations over repeated indices and use the Einstein summation convention that a repeated upper and lower index---like κ above---are summed from 0 to 3.$)$

Problem: Prove Eq. 2.3 by direct substitution of Eq. 2.2.

Now, by inspecting the special case Eq. 2.1 we see that the transformation closely resembles a rotation in a 4 -dimensional space. One of the salient characteristics of a rotation is that it leaves lengths of vectors invariant. That is, ordinary 3-dimensional rotations do not affect the dot product

$$
\vec{a} \cdot \vec{a} \equiv\left(a^{1}\right)^{2}+\left(a^{2}\right)^{2}+\left(a^{3}\right)^{2}
$$

Similarly, the Lorentz transformation does not affect the "dot product"

$$
\begin{equation*}
-s^{2}=\left(x^{0}\right)^{2}-\left(x^{1}\right)^{2}-\left(x^{2}\right)^{2}-\left(x^{3}\right)^{2} \tag{2.4}
\end{equation*}
$$

G ravitation and C osmology

Lorentz-invariant quantities

That is,

$$
-s^{\prime 2}=\left(x^{0,}\right)^{2}-\left(x^{\prime 1}\right)^{2}-\left(x^{\prime 2}\right)^{2}-\left(x^{\prime 3}\right)^{2}=\left(x^{0}\right)^{2}-\left(x^{1}\right)^{2}-\left(x^{2}\right)^{2}-\left(x^{3}\right)^{2}=-s^{2},
$$

which the astute student will recognize as Eq. 1.11.
In a nutshell, if an observer in S measures the space-time coordinates \mathbf{x} of an event and an observer in S^{\prime} measures the coordinates \mathbf{X}^{\prime} of the same event, and if they calculate $-s^{2}$ and $-s^{\prime 2}$, respectively, their results will be numerically the same.

The easiest way to see the invariance of $-s^{2}$ is by direct substitution. For simplicity, confine attention to the special case Eq. 2.1; then since $y^{\prime}=y$ and $z^{\prime}=z$, we have only to be sure

$$
\begin{equation*}
\left(c t^{\prime}\right)^{2}-\left(x^{\prime}\right)^{2}=(c t)^{2}-(x)^{2} . \tag{1.11}
\end{equation*}
$$

Of course this is correct because we used it to derive the Lorentz transformation in the first place!

Problem: demonstrate the invariance of $-s^{2}$ by direct substitution of the Lorentz transformation coefficients.

The coordinates \mathbf{X} of a space-time event are actually a difference between two coordinates.

Problem: Why is the preceding remark correct?

Thus we can generalize the Lorentz-invariance of $-s^{2}$ to an infinitesimal interval between space-time points \mathbf{X} and $\mathbf{x}+\mathrm{d} \mathbf{x}$:

$$
\begin{equation*}
(d \tau)^{2}=\frac{1}{c^{2}}\left[\left(d x^{0}\right)^{2}-\left(d x^{1}\right)^{2}-\left(d x^{2}\right)^{2}-\left(d x^{3}\right)^{2}\right] \equiv(d t)^{2}-\vec{x} \cdot \vec{x} / c^{2} \tag{2.5}
\end{equation*}
$$

The infinitesimal Lorentz invariant quantity $\mathrm{d} \tau$ is called the proper time. Its physical significance can be understood as follows: suppose a rocket moves at velocity \vec{u} in the S system. We measure this velocity by measuring successive positions at successive ticks of a clock. Suppose the time-interval between ticks is $d t$. Then in time $d t$ the rocket's position changes by $d \vec{x}=\vec{u} d t$. The proper time interval between successive position measurements is then

$$
\begin{equation*}
d \tau=\left((d t)^{2}-\vec{x} \cdot \vec{x} / c^{2}\right)^{1 / 2}=d t\left(1-\vec{u} \cdot \vec{u} / c^{2}\right)^{1 / 2} \tag{2.6}
\end{equation*}
$$

Now consider a system S^{\prime} whose velocity \vec{v} relative to S just happens to be the value of \vec{u} at time t. Then as measured in S^{\prime} the rocket has velocity 0 and the (Lorentz invariant) proper time interval has the value dt^{\prime}. In other words, the proper time is the time kept by the rocket pilot's own clock.

G ravitation and Cosmology

Lecture 2:

Uniform acceleration in a fixed direction

Consider a rocket that---from the point of view of the passengers---has constant acceleration along the x-direction. That is, as measured in the rocket's own frame, in a time $d \tau$ (the time kept by the control- room clock) the rocket gains linear velocity

$$
\begin{equation*}
\mathrm{du}=\mathrm{ad} \tau . \tag{2.7}
\end{equation*}
$$

What is the rocket's speed as seen from the frame S (not accelerating), with respect to which the rocket had speed 0 at $\tau=0$?

At time τ the rocket had speed v, and at time $\tau+d \tau$ it has speed $v+d v$, in the S system. To find the new speed we use the formula for addition of velocities: in a frame S^{\prime} moving with velocity v in the X-direction, the rocket has (after time $d \tau$) speed ad τ. (By taking $d \tau$ as small as we like, we can insure that the velocity du is extremely small compared with c .)

The speed in S is then

$$
\begin{equation*}
v+d v=\frac{v+d u}{1+v d u / c^{2}} \approx(v+d u)\left(1-v d u / c^{2}\right) . \tag{2.8}
\end{equation*}
$$

Expanding and keeping terms linear in du , we find

$$
v+d v=v+d u\left(1-v^{2} / c^{2}\right),
$$

or

$$
\begin{equation*}
d v=a d \tau\left(1-v^{2} / c^{2}\right) \tag{2.9}
\end{equation*}
$$

This is a differential equation, that can be solved by separation of variables:

$$
\begin{equation*}
a \tau=\int_{0}^{v} d v^{\prime}\left(1-v^{\prime 2} / c^{2}\right)^{-1}=\frac{c}{2} \log \left(\frac{1+v / c}{1-v / c}\right) \tag{2.10}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathrm{V}(\tau)=\mathrm{c} \tanh (\mathrm{a} \tau / \mathrm{c}) . \tag{2.11}
\end{equation*}
$$

That is, as a function of ship time (i.e., "proper" time), the velocity with respect to S increases from 0 , but remains less than c . Its asymptotic value is C .

We would like now to relate the time t in S to the ship's time τ, so we can re-express the speed v as a function of t. Recall that

$$
d t=\frac{d \tau}{\sqrt{1-v^{2} / c^{2}}}
$$

so that

$$
\begin{equation*}
t=\int_{0}^{\tau} d \tau^{\prime} \cosh \left(a \tau^{\prime} / c\right)=\frac{c}{a} \sinh (a \tau / c) . \tag{2.12}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
v(t)=\frac{\mathrm{at}}{\sqrt{1+(\mathrm{at} / \mathrm{c})^{2}}} . \tag{2.13}
\end{equation*}
$$

G ravitation and Cosmology

Physical meaning of \mathbf{S}^{2}

For small times, the speed is given by Newton's formula

$$
\mathrm{v}=\mathrm{at} \text {; }
$$

but as time increases without limit, $\mathrm{v} \rightarrow \mathrm{c}$.

Physical meaning of s^{2}

The quantity s^{2} defined previously is called the invariant interval between the origin in Σ and the spacetime event at \mathbf{x}. That is, if we think of the coinciding of the origins of S and S^{\prime} systems as a space-time event (event $\mathbf{0}$ in \mathbf{S}), then the invariant interval represents something about the difference between the point \mathbf{x} and the point $\mathbf{0}$.

The 45° lines represent the light cone, $x=c t$. The points represent events at timelike, lightlike or spacelike intervals from the origin

The physical interpretation is this:

- if $s^{2}<0$, then the interval is called timelike, and a light signal can connect the two events \boldsymbol{O} and \boldsymbol{x}.
- if $s^{2}=0$, the interval is called lightlike.
- if $s^{2}>0$, the interval is called spacelike and the events \boldsymbol{O} and \boldsymbol{x} cannot be connected by a light signal.

What is this business about light signals? Basically it means that if something takes place at point \vec{x}_{A} and time t_{A}, and something else takes place at \vec{x}_{B} and a later time t_{B}, if someone could have sent a signal (by light beam, e.g.) from \vec{X}_{A} at time t_{A} to point \vec{X}_{B} and the signal could in principle have arrived before time t_{B}, then the event at \vec{X}_{A} could have caused the event at \vec{X}_{B}. A simple calculation will show that in that case,

$$
s_{A B}^{2}=\left(\vec{x}_{A}-\vec{X}_{B}\right)^{2}-c^{2}\left(t_{A}-t_{B}\right)^{2}<0 .
$$

Conversely, if the events are too far apart for a light signal to get from one to the other in time $\delta t=t_{B}-t_{A}$, then A could not possibly have caused B. In this case, $s_{A B}^{2}>0$. This is rather fortunate, because if $S_{A B}^{2}>0$, it would be possible for an observer- - -say in S---to think B occurred after A; while another observer---in S^{\prime}, say---could determine that B occurred beforeA!

