
Lorentz-invariant quantities 
As we saw last time, the Lorentz transformation for our special case is 
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where γ = 
1

√1 − v2/c2  . 

In general, the transformation from S to S’ can be written as the product of a rotation and a boost. A
boost is a transformation that applies to two systems with their axes aligned, moving with relative
velocity v→. The general form of the transformation coefficients is 

Now, it is easy to see that the inverse transformation to Λµ
ν (v→ ) is Λµ

ν (−v→ ). That is, 

∑ 
κ=0

3

 Λµ
κ (v→ )  Λκ

ν (−v→ )  =  δµ
ν (2.3)

(We will now drop the explicit Σ representing summations over repeated indices and use the Einstein
summation convention that a repeated upper and lower index----like κ above----are summed from 0
to 3.) 

Problem: Prove Eq. 2.3 by direct substitution of Eq. 2.2.

 
Now, by inspecting the special case Eq. 2.1 we see that the transformation closely resembles a rotation
in a 4-dimensional space. One of the salient characteristics of a rotation is that it leaves lengths of
vectors invariant. That is, ordinary 3-dimensional rotations do not affect the dot product 
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Similarly, the Lorentz transformation does not affect the ‘‘dot product’’ 
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That is,
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which the astute student will recognize as Eq. 1.11. 

In a nutshell, if an observer in S measures the space-time coordinates x of an event and an observer
in S′ measures the coordinates x′ of the same event, and if they calculate −s2  and −s′2 , respectively,
their results will be numerically the same. 

The easiest way to see the invariance of −s2 is by direct substitution. For simplicity, confine attention
to the special case Eq. 2.1; then since y′ = y and z′ = z, we have only to be sure 

(ct′)2  −  (x′)2  =  (ct)2  −  (x)2 . (1.11) 

Of course this is correct because we used it to derive the Lorentz transformation in the first place! 

Problem: demonstrate the invariance of −s2 by direct substitution of the Lorentz transformation
coefficients.

The coordinates x of a space-time event are actually a difference between two coordinates. 

Problem: Why is the preceding remark correct?

Thus we can generalize the Lorentz-invariance of −s2 to an infinitesimal interval between space-time
points x and x + dx: 
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  ≡  (dt)2  −  x→ ⋅ x→ /c2 (2.5)

The infinitesimal Lorentz invariant quantity dτ is called the proper time. Its physical significance can
be understood as follows: suppose a rocket moves at velocity u→ in the S system. We measure this
velocity by measuring successive positions at successive ticks of a clock. Suppose the time-interval
between ticks is dt. Then in time dt the rocket’s position changes by dx→  =  u→ dt. The proper time
interval between successive position measurements is then 

dτ  =  (dt)2  −  x→ ⋅ x→ /c2


1⁄2
  =  dt 1  −  u→ ⋅ u→ /c2



1⁄2
(2.6)

Now consider a system S′ whose velocity v→ relative to S just happens to be the value of u→ at time t.
Then as measured in S′ the rocket has velocity 0 and the (Lorentz invariant) proper time interval
has the value dt′. In other words, the proper time is the time kept by the rocket pilot’s own clock. 
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Uniform acceleration in a fixed direction
Consider a rocket that----from the point of view of the passengers----has constant acceleration along
the x-direction. That is, as measured in the rocket’s own frame, in a time dτ (the time kept by the
control- room clock) the rocket gains linear velocity 

du = adτ . (2.7)

What is the rocket’s speed as seen from the frame S (not accelerating), with respect to which the
rocket had speed 0 at τ=0? 

At time τ the rocket had speed v, and at time τ + dτ it has speed v + dv, in the S system. To find the
new speed we use the formula for addition of velocities: in a frame S′ moving with velocity v in the
x-direction, the rocket has (after time dτ) speed adτ. (By taking dτ as small as we like, we can insure
that the velocity du is extremely small compared with c.) 

The speed in S is then 

v + dv = 
v + du

1 + vdu/c2  ≈  (v + du) (1 − vdu/c2)  . (2.8)

Expanding and keeping terms linear in du, we find 
v + dv  =  v  +  du (1 − v2/c2) ,

or 
dv = adτ (1 − v2/c2) . (2.9)

This is a differential equation, that can be solved by separation of variables: 
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(2.10)

or 
v(τ) = c tanh(aτ/c) . (2.11) 

That is, as a function of ship time (i.e., ‘‘proper’’ time), the velocity with respect to S increases from
0, but remains less than c. Its asymptotic value is c. 

We would like now to relate the time t in S to the ship’s time τ, so we can re-express the speed v as
a function of t. Recall that

dt = 
dτ

√ 1 − v2/c2  , 

so that 

t = ∫  
0

τ
dτ′ cosh(aτ′/c) = 

c
a

 sinh(aτ/c) . (2.12)

Therefore 

v(t)  =  
at

√ 1 + (at/c)2  . (2.13)
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For small times, the speed is given by Newton’s formula
v = at ; 

but as time increases without limit, v → c. 

Physical meaning of s2  
The quantity s2  defined previously is called the invariant interval between the origin in Σ and the
spacetime event at x. That is, if we think of the coinciding of the origins of S and S′ systems as a
space-time event (event 0 in S), then the invariant interval represents something about the difference
between the point x and the point 0. 

The physical interpretation is this:

•• if s2 < 0, then the interval is called timelike, and a light signal can connect the two events O and x .

•• if s2 = 0, the interval is called lightlike. 

•• if s2 > 0, the interval is called spacelike and the events O and x cannot be connected by a light signal.

 What is this business about light signals? Basically it means that if something takes place at point
x→A  and time tA , and something else takes place at x→B  and a later time tB , if someone could have

sent a signal (by light beam, e.g.) from x→A  at time tA  to point x→B  and the signal could in principle

have arrived before time  tB , then the event at x→A  could have caused the event at x→B . A simple
calculation will show that in that case, 

sAB
2   =  


x→A − x→B


2
  −  c2 


tA − tB


2
  <  0 . 

Conversely, if the events are too far apart for a light signal to get from one to the other in time
δt = tB − tA, then A could not possibly have caused B. In this case, sAB

2  > 0 . This is rather fortunate,

because if sAB
2  > 0 , it would be possible for an observer----say in S----to think B occurred after A; while

another observer----in S′, say----could determine that B occurred before A! 

The 45o lines represent the light cone, x=ct. The points represent
events at timelike, lightlike or spacelike intervals from the origin
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