
Dynamics of Particles

Relativistic momentum 
The Newtonian definition of momentum is 

p→  =  m 
dx→

dt
(4.1) 

Eq. 4.1 transforms like a 3-vector under Galilean transformations. 

But Eq. 4.1 does not transform like a vector under Lorentz transformations.  That is, the above
definition does not obey 

p’µ  =  Λµ
ν  pν . (4.2) 

This will lead to momentum nonconservation in some frames. 

One way out is to note that what went wrong is dt is not a Lorentz scalar (although it is a Galilean
scalar).  One can easily construct a 4-vector that reduces to the Newtonian definition at small
velocities by using dt rather than dt: 

pµ  =  m 
dxµ

dτ
 . (4.3) 

We see that in terms of  u→  =  
dx→

dt
, the space components of pµ are 

p→  =  
mu→

√ 1 − u2/c2  . (4.4) 

We shall discuss the time component, p0  =  
mc

√ 1 − u2/c2  , shortly. 

The above has been a mathematician’s approach to guessing the correct form of the momentum in
Special Relativity.  Is there some way a physicist might deduce it?  Obviously there is, or I wouldn’t
bring up the question! 

We want the momentum to obey Newton’s Law, 
dp→

dt
  =  F

→
.

We also want to have p→  ≈  mu→ at small speeds, u << c.  We can also use what we know about the
relativistic law of transformation of velocities.  And finally, we can use common sense to derive the
transformation law of an electric field parallel to the direction of the Lorentz boost.  Let us do this
first, to get it out of the way.  The essentials are shown below in Fig. 4.1. 
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Consider a test particle of charge q:  In the lab (S) its equation of motion is (in the  direction) 

61931
dp  =  qE || dt (4.5) 

whereas in the moving system (instantaneous rest frame) we have 
dp’  =  qE ’|| dt’  =  qE || dt’  =  qE || dτ (4.5’) 

Hence 

qE ||  =  
dp
dt

  =  
dp’
dτ

or

dp  =  dp’ 
dt
dτ

  =  
dp’

√1 − u2/c2 (4.6) 

In the instantaneous rest frame we have 
dp’  =  m du’

while from addition of velocities we have 

u + du  =  
u + du’

1 + u du’/c2

or 
du  =  du’ (1 − u2/c2 ) (4.7) 

Thus from Eq. 4.6 we have 

dp  =  m du (1 − u2/c2 )
−3⁄2

(4.8) 

That is, our assumptions have led to a differential equation for linear momentum in terms of linear
velocity.  Calling β  =  u/c we have 

E ||

Maxwell’s equation is ∇ ⋅ E
→
  =  4πρ , hence look-

ing at the pillbox we find

E ||  =  4πσ

Since the area dA is ⊥ the velocity relating the
two frames, σ is the same in both (charge conser-
vation). Thus the parallel (||) component of the
electric field, E || , is the same in both.

dA

Surface charge +σ Surface charge -- σ
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p  =  mc ∫  
0

β
 dβ (1 − β2 )

−3⁄2
  =  

mcβ
√1 − β2 (4.9) 

This strongly suggests that 

p→  =  
mu→

√ 1 − u2/c2 (4.10) 

is indeed the correct generalization of Newtonian momentum. 

Problem: 
Show explicitly that if momentum is conserved in an inertial frame S, then according to Eq. 4.10 it
is conserved in a frame S’ related to S by a Lorentz transformation. 

(Hint: use the relativistic transformation of velocity.)

Energy 
Again, we would like to keep the physical laws in Special Relativity as close as possible to the
Newtonian form. This will guarantee no surprises re energy conservation, etc. 

Thus we define energy as work: 

dW  =  F
→
 ⋅ dx→ (4.11) 

or 

W  =  ∫ dx→ ⋅ 
dp→

dt
  =  ∫ 

dx→

dt
 ⋅ 

dp→

dt
 dt  =  ∫ u→ ⋅ 

dp→

dt
 dt  =  ∫ u→ ⋅ dp→

=  ∫ mu→ ⋅ du→ (1 − u→2/c2 )
−3⁄2

(4.12)

∴   W  =  
mc2

√1 − u2/c2   −  mc2 (4.13) 

The energy gained in accelerating a particle from u  =  0 to some final speed u reduces to

∆W  ≈  1
2
 mu2 (4.14)

which is the Newtonian kinetic energy. Since the energy gain is the difference of two energies,
mc2

√1 − u2/c2  and mc2, this result strongly suggests we interpret the energy of a moving particle to be

E  =  
mc2

√1 − u2/c2  .

It further says that the energy of a particle at rest is mc2 .  This has implications we shall consider in
the next lecture. 
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But for now, note that the p0 we found as p0  =  
mc

√ 1 − u2/c2  is related to E via 

E  =  p0 c (4.15) 

That is, we can interpret the 4th component of 4-momentum as energy, and we see that the
conservation of energy----far from being a law distinct from conservation of momentum----actually is
part of the same law: Conservation of 4-momentum. 

Gravitation and Cosmology
Energy 

18


