
Linear field approximation to gravitation 

Masslessness of photon (a digression with some physical interest)
We have seen already that the gauge invariance of electromagnetism is related to the absence of a
mass term in the Lagrangian†, of the form

Lmass  =  
1
2

 m2 AµAµ (10.1)

Equation 10.1 is not invariant under the gauge transformation 

Aµ  →  Aµ  +  ∂µ Λ ,

because it obviously develops additional terms proportional to Λ. 

We also saw that conservation of electric charge, expressed via
∂µ Jµ  =  0

is connected with gauge invariance, since
Lint  =  − JµAµ

transforms into
Lint  =  − JµAµ  −  Jµ ∂µΛ  ≡  − JµAµ  −  ∂µ Jµ Λ

  +  Λ ∂µ Jµ .

The last term vanishes because of charge conservation, hence the change in the Lagrangian density
is a pure divergence, which cannot contribute to the Euler-Lagrange equations. Thus, for esthetic
reasons we believe the photon is massless.

However, physics----as opposed to philosophy----is an experimental science. What does experiment

say? A massive photon would lead to a modified Coulomb potential Q 
e−mr

r
 (in units with

h--  =  c  =  1). The current best limit‡ on the photon mass, mγ  is mγ ≤ 6×10−16 eV/c2, arising from the
detection and mapping of the magnetic field of the planet Jupiter.
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† We also saw why Eq. 10.1 is called a mass term. 
‡ See PRL 35 (1975) 1402.



Why does gravitation couple to Tµν   ?
1. The Principle of Equivalence, as determined experimentally by Galileo and by the Eötvos

experiment ⇒ that gravitation couples to energy; consider a hot and a cold object of the
same composition and size. Which is heavier? Obviously the hot one. Why? Near the sur-
face of the Earth, the weight is given by

W  =  g ∑ 
n=1

N

 
mn

√1 − un
2   ≈  gM  +  g 



3
2

 NkBT



(10.2) 

2. If gravitation were a vector, then the force would couple to the ‘‘charge’’ (mass) as in elec-
tromagnetism,

F
→

  =  −∇ A0

hence with A0 = gz,
W  =  gM (10.3)

independent of T. 

3. If gravitation were a scalar field, then we would vary
L  =  −

mc2  +  S
 √1 − u→ ⋅ u→/c2

to find

F
→

  =  −∇S √1 − u→ ⋅ u→/c2  .

That is, the weight would decrease with temperature:

W  ≈  mg  −  g 


3
2

 NkBT


 . (10.4)

Also, we would find that if the field were a scalar the source would have to be a scalar also,
because the field equation would have to be the (Lorentz-invariant) generalization of New-
ton’s Law of Universal Gravitation,

∂µ∂µ ϕ  =  4πσ

hence σ would be ∝  Tµ
µ . But for the electromagnetic field, Tµ

µ  =  0 . That is, the electro-
magnetic contribution to the mass-energy of a body could not contribute to its gravita-
tional mass.

4. A tensor gravitational field would agree with the Principle of equivalence: as we saw in the
homework solutions, the Lagrangian for a slowly moving body,

L  ≈  −mc2 √1 − u→ ⋅ u→/c2   −  m 
h00(r)

√1 − u→ ⋅ u→/c2

predicts a gravitational force proportional to the energy content,

F
→

  =  −∇ 



m 

h00(r)
√1 − u→ ⋅ u→/c2  




  .
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We therefore conclude the gravitational field must be represented by a second-rank tensor, hµν. We
therefore seek a field equation like

ϕµν  =  −4πG Tµν , (10.5)

where ϕµν is a tensor constructed from the (tensor) gravitational potential hµν by the usual operations

of differentiation and/or multiplication by the Minkowski tensor ηµν.

The source term in the field equation must also be a rank-2 tensor, whose only reasonable candidate

is the energy-momentum tensor, Tµν.

Clearly, ϕµν must satisfy
ϕµν  =  ϕνµ (10.6)

and
∂µ ϕµν  =  0 . (10.7)

Equation 10.7 follows because
∂µ Tµν  =  0 .

Now how can we construct ϕµν ? Suppose we start with hµν (which we may obviously assume
symmetric); what kinds of terms can we make out of hµν under the restrictions:

•• ϕµν must be linear in hµν ;

•• ϕµν can involve derivatives no higher than second-order.

Let
ϕµν  =  m2 hµν  +  m’2 ηµν hκ

κ  +  (1) ∂κ∂κ hµν  +  b 

∂µ∂κ hκν + ∂ν∂κ hµκ


  +

+  c ∂µ∂ν hκ
κ  +  d ηµν ∂κ∂κ hλ

λ  +  e ηµν ∂κ∂λ hκλ (10.8)

We have chosen the coefficient of ∂κ∂κ hµν to be unity to set the overall scale of hµν .

Since gravitation is observed to act at least over distances of order of the radius of globular clusters,
we may surmise it is a long range force and that the mass terms are negligible:

m  =  m’  =  0 . 

Then from Eq. 10.7 we have
∂µ ϕµν  =  0  =  ∂κ∂κ ∂µhµν (l + b)  +  (b + e) ∂ν∂κ∂λ hκλ  +   (c + d) ∂ν ∂κ∂κ hλ

λ (10.9)

Hence
1 + b  =  0
b + e  =  0
c + d  =  0 .

(10.10)
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Thus
ϕµν  =  ∂κ∂κ hµν  −  ∂

µ∂κ hκν + ∂ν∂κ hµκ
  +  ηµν ∂κ ∂λ hκλ  +

+  c ∂µ∂ν − ηµν ∂κ∂κ
 hλ

λ  . (10.11)

The only free parameter----after linearity in hµν and the conservation of Tµν are required (a form of
gauge condition)----is c. The question we must answer next is, ‘‘What does c stand for?’’ Can we choose
c arbitrarily or is it physical ?

Consider the ‘‘gauge’’ transformation
hµν  →  h

~µν  −  C ηµν h (10.12)

where

h  =
df

  hλ
λ  ,

and similarly with h
~
. Since ηµν ηµν  =  4, we see

h  →  h
~
 (1 − 4C) ; (10.13)

so that

ϕ~ µν  =  ∂κ∂κ h
~
 µν  −  ∂µ∂κ h

~
 κν + ∂ν∂κ h

~
 µκ

  +  ηµν ∂κ ∂λ h
~
 κλ  +

+  2C + c (1 − 4C)  ∂µ∂ν − ηµν ∂κ∂κ

 h

~
  . (10.14)

Writing 
c~  =  2C  +  c (1 − 4C) ,

we see that ϕ~ µν is the same function of h
~
 µν as ϕµν is of hµν, except with c replaced by c~ . Obviously

we can make c~  anything we want it to be. For example, choosing

C  =  
c

2(2c − 1)
 ,

we can make c~  =  0 and simply drop this term;  alternatively, we could let

C  =  
c − 1

2(2c − 1)
 ,

making c~  =  1. We choose the latter, obtaining the linearized, Lorentz-invariant gravitational field
equations

∂κ∂κ hµν  −  ∂µ∂κ hκν + ∂ν∂κ hµκ
  +  ηµν ∂κ ∂λ hκλ  +    

+  ∂
µ∂ν − ηµν ∂κ∂κ


 hλ

λ  =  −4πTµν
(10.15) 

Equation 10.15 is invariant under the gauge transformation

hµν  →  hµν  +  
1
2

 ∂µΛν + ∂ν Λµ
  =  h

~
 µν . (10.16)

We leave the proof as an exercise for the student.
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