Linear field approximation to gravitation

Masslessness of photon (a digression with some physical interest)

We have seen already that the gauge invariance of electromagnetism is related to the absence of a mass term in the Lagrangian ${ }^{\dagger}$, of the form

$$
\begin{equation*}
\mathrm{L}_{\text {mass }}=\frac{1}{2} \mathrm{~m}^{2} \mathrm{~A}^{\mu} \mathrm{A}_{\mu} \tag{10.1}
\end{equation*}
$$

Equation 10.1 is not invariant under the gauge transformation

$$
A^{\mu} \rightarrow A^{\mu}+\partial^{\mu} \Lambda,
$$

because it obviously develops additional terms proportional to Λ.
We also saw that conservation of electric charge, expressed via

$$
\partial_{\mu} J^{\mu}=0
$$

is connected with gauge invariance, since

$$
L_{\text {int }}=-J^{\mu} A_{\mu}
$$

transforms into

$$
\mathrm{L}_{\text {int }}=-J^{\mu} \mathrm{A}_{\mu}-J^{\mu} \partial_{\mu} \Lambda \equiv-J^{\mu} \mathrm{A}_{\mu}-\partial_{\mu}\left(J^{\mu} \Lambda\right)+\Lambda \partial_{\mu} J^{\mu} .
$$

The last term vanishes because of charge conservation, hence the change in the Lagrangian density is a pure divergence, which cannot contribute to the Euler-Lagrange equations. Thus, for esthetic reasons we believe the photon is massless.

However, physics---as opposed to philosophy---is an experimental science. What does experiment say? A massive photon would lead to a modified Coulomb potential $Q \frac{e^{-m r}}{r}$ (in units with $\hbar=\mathrm{c}=1$). The current best limit ${ }^{\ddagger}$ on the photon mass, m_{γ} is $\mathrm{m}_{\gamma} \leq 6 \times 10^{-16} \mathrm{eV} / \mathrm{c}^{2}$, arising from the detection and mapping of the magnetic field of the planet Jupiter.

[^0]
G ravitation and Cosmology

Why does gravitation couple to $T^{\mu \nu}$?

Why does gravitation couple to $T^{\mu \nu}$
 ?

1. The Principle of Equivalence, as determined experimentally by Galileo and by the Eötvos experiment \Rightarrow that gravitation couples to energy; consider a hot and a cold object of the same composition and size. Which is heavier? O bviously the hot one. Why? N ear the surface of the E arth, the weight is given by

$$
\begin{equation*}
W=g \sum_{n=1}^{N} \frac{m_{n}}{\sqrt{1-u_{n}^{2}}} \approx g M+g\left(\frac{3}{2} N k_{B} T\right) \tag{10.2}
\end{equation*}
$$

2. If gravitation were a vector, then the force would couple to the "charge" (mass) as in electromagnetism,

$$
\vec{F}=-\nabla A^{0}
$$

hence with $A^{0}=g z$,

$$
\begin{equation*}
W=g M \tag{10.3}
\end{equation*}
$$

independent of T.
3. If gravitation were a scalar field, then we would vary

$$
\mathrm{L}=-\left(m c^{2}+S\right) \sqrt{1-\overrightarrow{\mathrm{u}} \cdot \overrightarrow{\mathrm{u}} / \mathrm{c}^{2}}
$$

to find

$$
\overrightarrow{\mathrm{F}}=-\nabla \mathrm{S} \sqrt{1-\overrightarrow{\mathrm{u}} \cdot \overrightarrow{\mathrm{u}} / \mathrm{c}^{2}} .
$$

That is, the weight would decrease with temperature:

$$
\begin{equation*}
W \approx m g-g\left(\frac{3}{2} N k_{B} T\right) . \tag{10.4}
\end{equation*}
$$

A lso, we would find that if the field were a scalar the source would have to be a scalar also, because the field equation would have to be the (Lorentz-invariant) generalization of N ewton's Law of U niversal G ravitation,

$$
\partial_{\mu} \partial^{\mu} \varphi=4 \pi \sigma
$$

hence σ would be $\propto T^{\mu}{ }_{\mu}$. But for the electromagnetic field, $T^{\mu}{ }_{\mu}=0$. That is, the electromagnetic contribution to the mass-energy of a body could not contribute to its gravita tional mass.
4. A tensor gravitational field would agree with the Principle of equivalence: as we saw in the homework solutions, the Lagrangian for a slowly moving body,

$$
L \approx-m c^{2} \sqrt{1-\vec{u} \cdot \vec{u} / c^{2}}-m \frac{h^{00}(r)}{\sqrt{1-\vec{u} \cdot \vec{u} / c^{2}}}
$$

predicts a gravitational force proportional to the energy content,

$$
\overrightarrow{\mathrm{F}}=-\nabla\left(m \frac{h^{00}(r)}{\sqrt{1-\vec{u} \cdot \vec{u} / c^{2}}}\right)
$$

G ravitation and C osmology

Lecture 10: Linear field approximation to gravitation

We therefore conclude the gravitational field must be represented by a second-rank tensor, $h^{\mu \nu}$. We therefore seek a field equation like

$$
\begin{equation*}
\varphi^{\mu \nu}=-4 \pi G T^{\mu \nu} \tag{10.5}
\end{equation*}
$$

where $\varphi^{\mu \nu}$ is a tensor constructed from the (tensor) gravitational potential $h^{\mu \nu}$ by the usual operations of differentiation and/or multiplication by the Minkowski tensor $\eta^{\mu \nu}$.

The source term in the field equation must also be a rank-2 tensor, whose only reasonable candidate is the energy-momentum tensor, $T^{\mu \nu}$.

Clearly, $\varphi^{\mu v}$ must satisfy

$$
\begin{equation*}
\varphi^{\mu \nu}=\varphi^{\nu \mu} \tag{10.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\partial_{\mu} \varphi^{\mu \nu}=0 . \tag{10.7}
\end{equation*}
$$

Equation 10.7 follows because

$$
\partial_{\mu} T^{\mu \nu}=0 .
$$

Now how can we construct $\varphi^{\mu \nu}$? Suppose we start with $h^{\mu \nu}$ (which we may obviously assume symmetric); what kinds of terms can we make out of $h^{\mu v}$ under the restrictions:

- $\varphi^{\mu \nu}$ must be linear in $h^{\mu \nu}$;
- φ^{uv} can involve derivatives no higher than second-order.

Let

$$
\begin{align*}
\varphi^{\mu v} & =m^{2} h^{\mu \nu}+m^{\prime 2} \eta^{\mu \nu} h_{\kappa}^{\kappa}{ }_{\kappa}+(1) \partial^{\kappa} \partial_{\kappa} h^{\mu \nu}+b\left[\partial^{\mu} \partial_{\kappa} h^{\kappa v}+\partial^{\nu} \partial_{\kappa} h^{\mu \kappa}\right]+ \\
& +c \partial^{\mu} \partial^{\nu} h^{\kappa}{ }_{\kappa}+d \eta^{\mu \nu} \partial^{\kappa} \partial_{\kappa} h_{\lambda}^{\lambda}+e \eta^{\mu \nu} \partial_{\kappa} \partial_{\lambda} h^{\kappa \lambda} \tag{10.8}
\end{align*}
$$

We have chosen the coefficient of $\partial^{\kappa} \partial_{\kappa} h^{\mu \nu}$ to be unity to set the overall scale of $h^{\mu \nu}$.
Since gravitation is observed to act at least over distances of order of the radius of globular clusters, we may surmise it is a long range force and that the mass terms are negligible:

$$
m=m^{\prime}=0 .
$$

Then from Eq. 10.7 we have

$$
\begin{equation*}
\partial_{\mu} \varphi^{\mu \nu}=0=\partial^{\kappa} \partial_{\kappa} \partial_{\mu} h^{\mu \nu}(l+b)+(b+e) \partial^{\nu} \partial_{\kappa} \partial_{\lambda} h^{\kappa \lambda}+(c+d) \partial^{\nu} \partial^{\kappa} \partial_{\kappa} h_{\lambda}^{\lambda} \tag{10.9}
\end{equation*}
$$

Hence

$$
\begin{align*}
& 1+b=0 \\
& b+e=0 \tag{10.10}\\
& c+d=0 .
\end{align*}
$$

G ravitation and C osmology

Why does gravitation couple to $T^{\mu \nu}$?

Thus

$$
\begin{align*}
\varphi^{\mu \nu} & =\partial^{\kappa} \partial_{\kappa} h^{\mu \nu}-\left(\partial^{\mu} \partial_{\kappa} h^{\kappa \nu}+\partial^{\nu} \partial_{\kappa} h^{\mu \kappa}\right)+\eta^{\mu \nu} \partial_{\kappa} \partial_{\lambda} h^{\kappa \lambda}+ \\
& +c\left(\partial^{\mu} \partial^{\nu}-\eta^{\mu \nu} \partial^{\kappa} \partial_{\kappa}\right) h_{\lambda}^{\lambda} . \tag{10.11}
\end{align*}
$$

The only free parameter- - after linearity in $h^{\mu \nu}$ and the conservation of $T^{\mu \nu}$ are required (a form of gauge condition) ---is C . The question we must answer next is, "What does C stand for?" Can we choose C arbitrarily or is it physical ?

Consider the "gauge" transformation

$$
\begin{equation*}
h^{\mu \nu} \rightarrow h^{\mu \nu}-C \eta^{\mu \nu} h \tag{10.12}
\end{equation*}
$$

where

$$
h \stackrel{d f}{=} h_{\lambda}^{\lambda},
$$

and similarly with \tilde{h}. Since $\eta^{\mu \nu} \eta_{\mu \nu}=4$, we see

$$
\begin{equation*}
h \rightarrow \tilde{h}(1-4 C) ; \tag{10.13}
\end{equation*}
$$

so that

$$
\begin{align*}
\widetilde{\varphi}^{\mu \nu} & =\partial^{\kappa} \partial_{\kappa} \widetilde{h}^{\mu \nu}-\left(\partial^{\mu} \partial_{\kappa} \widetilde{h}^{\kappa \nu}+\partial^{\nu} \partial_{\kappa} \widetilde{h}^{\mu \kappa}\right)+\eta^{\mu \nu} \partial_{\kappa} \partial_{\lambda} \widetilde{h}^{\kappa \lambda}+ \\
& +[2 C+c(1-4 C)]\left[\partial^{\mu} \partial^{\nu}-\eta^{\mu \nu} \partial^{\kappa} \partial_{\kappa}\right] \widetilde{h} . \tag{10.14}
\end{align*}
$$

Writing

$$
\widetilde{c}=2 C+c(1-4 C),
$$

we see that $\widetilde{\varphi}^{\mu \nu}$ is the same function of $\widetilde{h^{\mu \nu}}$ as $\varphi^{\mu \nu}$ is of $h^{\mu \nu}$, except with c replaced by \widetilde{C}. Obviously we can make $\widetilde{\mathrm{C}}$ anything we want it to be. For example, choosing

$$
C=\frac{c}{2(2 c-1)},
$$

we can make $\widetilde{\mathrm{C}}=0$ and simply drop this term; alternatively, we could let

$$
C=\frac{c-1}{2(2 c-1)},
$$

making $\widetilde{c}=1$. We choose the latter, obtaining the linearized, Lorentz-invariant gravitational field equations

$$
\begin{align*}
\partial^{\kappa} \partial_{\kappa} h^{\mu \nu}-\left(\partial^{\mu} \partial_{\kappa} h^{\kappa \nu}\right. & \left.+\partial^{\nu} \partial_{\kappa} h^{\mu \kappa}\right)+\eta^{\mu \nu} \partial_{\kappa} \partial_{\lambda} h^{\kappa \lambda}+ \tag{10.15}\\
& +\left(\partial^{\mu} \partial^{\nu}-\eta^{\mu \nu} \partial^{\kappa} \partial_{\kappa}\right) h_{\lambda}^{\lambda}=-4 \pi T^{\mu \nu}
\end{align*}
$$

Equation 10.15 is invariant under the gauge transformation

$$
\begin{equation*}
h^{\mu \nu} \rightarrow h^{\mu \nu}+\frac{1}{2}\left[\partial^{\mu} \Lambda^{\nu}+\partial^{\nu} \Lambda^{\mu}\right]=\widetilde{h^{\mu \nu}} \tag{10.16}
\end{equation*}
$$

We leave the proof as an exercise for the student.

[^0]: \dagger We also saw why Eq. 10.1 is called a mass term.
 \ddagger See PRL 35 (1975) 1402.

