Gravitation and Cosmology

Lecture 10: Linear field approximation to gravitation

Linear field approximation to gravitation

Masslessness of photon (a digression with some physical interest)

We have seen already that the gauge invariance of electromagnetism is related to the absence of a mass term in the Lagrangian^{\dagger}, of the form

$$L_{mass} = \frac{1}{2} m^2 A^{\mu} A_{\mu}$$
(10.1)

Equation 10.1 is not invariant under the gauge transformation

$$A^{\mu} \rightarrow A^{\mu} + \partial^{\mu} \Lambda$$
,

because it obviously develops additional terms proportional to Λ .

We also saw that conservation of electric charge, expressed via

 $\partial_{\mu} J^{\mu} = 0$

is connected with gauge invariance, since

$$L_{int} = -J^{\mu}A_{\mu}$$

transforms into

$$\mathsf{L}_{int} = -J^{\mu}A_{\mu} - J^{\mu}\partial_{\mu}\Lambda \equiv -J^{\mu}A_{\mu} - \partial_{\mu}(J^{\mu}\Lambda) + \Lambda \partial_{\mu}J^{\mu}.$$

The last term vanishes because of charge conservation, hence the change in the Lagrangian density is a pure divergence, which cannot contribute to the Euler-Lagrange equations. Thus, for esthetic reasons we believe the photon is massless.

However, physics----as opposed to philosophy----is an experimental science. What does experiment say? A massive photon would lead to a modified Coulomb potential $Q \frac{e^{-mr}}{r}$ (in units with $\hbar = c = 1$). The current best limit[‡] on the photon mass, m_{γ} is $m_{\gamma} \le 6 \times 10^{-16} \text{ eV}/c^2$, arising from the detection and mapping of the magnetic field of the planet Jupiter.

[†] We also saw why Eq. 10.1 is called a *mass* term.

[‡] See *PRL* **35** (1975) 1402.

Gravitation and Cosmology

Why does gravitation couple to $T^{\mu\nu}$?

Why does gravitation couple to $T^{\mu\nu}$?

1. The Principle of Equivalence, as determined experimentally by Galileo and by the Eötvos experiment ⇒ that gravitation couples to energy; consider a hot and a cold object of the same composition and size. Which is heavier? Obviously the hot one. Why? Near the surface of the Earth, the weight is given by

$$W = g \sum_{n=1}^{N} \frac{m_n}{\sqrt{1 - u_n^2}} \approx gM + g\left(\frac{3}{2}Nk_BT\right)$$
(10.2)

2. If gravitation were a vector, then the force would couple to the "charge" (mass) as in electromagnetism,

$$\vec{F} = -\nabla A^{0}$$
hence with $A^{0} = gz$,
 $W = gM$ (10.3)
independent of *T*.

3. If gravitation were a scalar field, then we would vary

$$L = -\left(mc^2 + S\right)\sqrt{1 - \vec{u} \cdot \vec{u}/c^2}$$

to find

$$\vec{F} = -\nabla S \sqrt{1 - \vec{u} \cdot \vec{u}/c^2} \,.$$

That is, the weight would decrease with temperature:

$$W \approx mg - g\left(\frac{3}{2}Nk_BT\right). \tag{10.4}$$

Also, we would find that if the field were a scalar the source would have to be a scalar also, because the field equation would have to be the (Lorentz-invariant) generalization of Newton's Law of Universal Gravitation,

$$\partial_{\mu}\partial^{\mu}\phi = 4\pi\sigma$$

hence σ would be $\propto T^{\mu}_{\ \mu}$. But for the electromagnetic field, $T^{\mu}_{\ \mu} = 0$. That is, the electromagnetic contribution to the mass-energy of a body could not contribute to its gravitational mass.

4. A tensor gravitational field would agree with the Principle of equivalence: as we saw in the homework solutions, the Lagrangian for a slowly moving body,

$$L \approx -mc^2 \sqrt{1 - \vec{u} \cdot \vec{u}/c^2} - m \frac{h^{00}(r)}{\sqrt{1 - \vec{u} \cdot \vec{u}/c^2}}$$

predicts a gravitational force proportional to the energy content,

$$\vec{F} = -\nabla \left(m \frac{h^{00}(r)}{\sqrt{1 - \vec{u} \cdot \vec{u}/c^2}} \right)$$

Gravitation and Cosmology

Lecture 10: Linear field approximation to gravitation

We therefore conclude the gravitational field must be represented by a second-rank tensor, $h^{\mu\nu}$. We therefore seek a field equation like

$$\varphi^{\mu\nu} = -4\pi G \, T^{\mu\nu} \,, \tag{10.5}$$

where $\phi^{\mu\nu}$ is a tensor constructed from the (tensor) gravitational potential $h^{\mu\nu}$ by the usual operations of differentiation and/or multiplication by the Minkowski tensor $\eta^{\mu\nu}$.

The source term in the field equation must also be a rank-2 tensor, whose only reasonable candidate is the energy-momentum tensor, $T^{\mu\nu}$.

Clearly,
$$\varphi^{\mu\nu}$$
 must satisfy
 $\varphi^{\mu\nu} = \varphi^{\nu\mu}$ (10.6)
and
 $\partial_{\mu} \varphi^{\mu\nu} = 0.$ (10.7)

a

 $\partial_{\mu} \phi^{\mu\nu} = 0$.

Equation 10.7 follows because

 $\partial_{\mu} T^{\mu\nu} = 0$.

Now how can we construct $\phi^{\mu\nu}$? Suppose we start with $h^{\mu\nu}$ (which we may obviously assume symmetric); what kinds of terms can we make out of $h^{\mu\nu}$ under the restrictions:

- $\Phi^{\mu\nu}$ must be linear in $h^{\mu\nu}$;
- $\phi^{\mu\nu}$ can involve derivatives no higher than second-order.

Let

$$\varphi^{\mu\nu} = m^2 h^{\mu\nu} + m'^2 \eta^{\mu\nu} h^{\kappa}_{\kappa} + (1) \partial^{\kappa}\partial_{\kappa} h^{\mu\nu} + b \Big[\partial^{\mu}\partial_{\kappa} h^{\kappa\nu} + \partial^{\nu}\partial_{\kappa} h^{\mu\kappa} \Big] + c \partial^{\mu}\partial^{\nu} h^{\kappa}_{\kappa} + d \eta^{\mu\nu} \partial^{\kappa}\partial_{\kappa} h^{\lambda}_{\lambda} + e \eta^{\mu\nu} \partial_{\kappa}\partial_{\lambda} h^{\kappa\lambda}$$
(10.8)

We have chosen the coefficient of $\partial^{\kappa}\partial_{\kappa} h^{\mu\nu}$ to be unity to set the overall scale of $h^{\mu\nu}$.

Since gravitation is observed to act at least over distances of order of the radius of globular clusters, we may surmise it is a long range force and that the mass terms are negligible: m = m' = 0.

Then from Eq. 10.7 we have

 $\partial_{\mu} \phi^{\mu\nu} = 0 = \partial^{\kappa} \partial_{\kappa} \partial_{\mu} h^{\mu\nu} (l+b) + (b+e) \partial^{\nu} \partial_{\kappa} \partial_{\lambda} h^{\kappa\lambda} + (c+d) \partial^{\nu} \partial^{\kappa} \partial_{\kappa} h^{\lambda}_{\lambda}$ (10.9) Hence 1 + b = 0b + e = 0(10.10)c + d = 0 .

Gravitation and Cosmology Why does gravitation couple to $T^{\mu\nu}$?

Thus

$$\phi^{\mu\nu} = \partial^{\kappa}\partial_{\kappa} h^{\mu\nu} - \left(\partial^{\mu}\partial_{\kappa} h^{\kappa\nu} + \partial^{\nu}\partial_{\kappa} h^{\mu\kappa}\right) + \eta^{\mu\nu} \partial_{\kappa} \partial_{\lambda} h^{\kappa\lambda} + c \left(\partial^{\mu}\partial^{\nu} - \eta^{\mu\nu} \partial^{\kappa}\partial_{\kappa}\right) h^{\lambda}{}_{\lambda} .$$

$$(10.11)$$

The only free parameter----after linearity in $h^{\mu\nu}$ and the conservation of $T^{\mu\nu}$ are required (a form of gauge condition)----is c. The question we must answer next is, "What does c stand for?" Can we choose *c* arbitrarily or is it physical ?

Consider the "gauge" transformation

$$h^{\mu\nu} \to h^{\mu\nu} - C \eta^{\mu\nu} h \tag{10.12}$$

where df

$$h = h^{\lambda}_{\lambda}$$

and similarly with \tilde{h} . Since $\eta^{\mu\nu} \eta_{\mu\nu} = 4$, we see

$$h \to h (1 - 4C); \qquad (10.13)$$

so that

$$\widetilde{\varphi}^{\mu\nu} = \partial^{\kappa}\partial_{\kappa}\widetilde{h}^{\mu\nu} - \left(\partial^{\mu}\partial_{\kappa}\widetilde{h}^{\kappa\nu} + \partial^{\nu}\partial_{\kappa}\widetilde{h}^{\mu\kappa}\right) + \eta^{\mu\nu}\partial_{\kappa}\partial_{\lambda}\widetilde{h}^{\kappa\lambda} + \left[2C + c\left(1 - 4C\right)\right]\left[\partial^{\mu}\partial^{\nu} - \eta^{\mu\nu}\partial^{\kappa}\partial_{\kappa}\right]\widetilde{h}.$$
(10.14)

Writing

 $\widetilde{c} = 2C + c(1 - 4C),$

we see that $\widetilde{\varphi}^{\mu\nu}$ is the same function of $\widetilde{h}^{\mu\nu}$ as $\varphi^{\mu\nu}$ is of $h^{\mu\nu}$, except with *c* replaced by \widetilde{c} . Obviously we can make \tilde{c} anything we want it to be. For example, choosing

$$C=\frac{c}{2(2c-1)},$$

we can make $\tilde{c} = 0$ and simply drop this term; alternatively, we could let

$$C=\frac{c-1}{2(2c-1)},$$

making $\tilde{c} = 1$. We choose the latter, obtaining the linearized, Lorentz-invariant gravitational field equations

$$\partial^{\kappa}\partial_{\kappa} h^{\mu\nu} - \left(\partial^{\mu}\partial_{\kappa} h^{\kappa\nu} + \partial^{\nu}\partial_{\kappa} h^{\mu\kappa}\right) + \eta^{\mu\nu} \partial_{\kappa} \partial_{\lambda} h^{\kappa\lambda} + \left(\partial^{\mu}\partial^{\nu} - \eta^{\mu\nu} \partial^{\kappa}\partial_{\kappa}\right) h^{\lambda}{}_{\lambda} = -4\pi T^{\mu\nu}$$
(10.15)

Equation 10.15 is invariant under the gauge transformation

$$h^{\mu\nu} \to h^{\mu\nu} + \frac{1}{2} \Big[\partial^{\mu} \Lambda^{\nu} + \partial^{\nu} \Lambda^{\mu} \Big] = \widetilde{h}^{\mu\nu} \,. \tag{10.16}$$

We leave the proof as an exercise for the student.