Gravitation and Cosmology
Lecture 10: Linear field approximation to gravitation

Linear field approximation to gravitation

Masslessness of photon (a digression with some physical interest)

We have seen already that the gauge invariance of electromagnetism is related to the absence of a

T

mass term in the Lagrangian', of the form

Lo =~ A"A, (10.1)

mass 2

Equation 10.1 is not invariant under the gauge transformation
A"® A"+ gL,
because it obviously develops additional terms proportional to L.

We also saw that conservation of electric charge, expressed via
0" =0

is connected with gauge invariance, since
Lint = - ‘]mAm

transforms into
Ling = = JAp - Mk © - AR - 1,800+ L 1™

The last term vanishes because of charge conservation, hence the change in the Lagrangian density
is a pure divergence, which cannot contribute to the Euler-Lagrange equations. Thus, for esthetic
reasons we believe the photon is massless.

However, physics---as opposed to philosophy---is an experimental science. What does experiment
-mr

say! A massive photon would lead to a modified Coulomb potential Q (in units with

h = ¢ = 1). The current best limit* on the photon mass, m is my£ 6 10716 eV/CZ, arising from the

g
detection and mapping of the magnetic field of the planet Jupiter.

t  We also saw why Eq. 10.1 is called a mass term.
1 See PRL 35 (1975) 1402.
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Why does gravitation coupleto T™ ?

1. The Principle of Equivalence, as determined experimentally by Galileo and by the E6tvos
experiment P that gravitation couples to energy; consider a hot and a cold object of the
same composition and size. Which is heavier? Obviously the hot one. Why? Near the sur-
face of the Earth, the weight is given by

N

» gM + g & Nk TS (10.2)

& o

]
W=ga

n=1

mn
A

2. If gravitation were a vector, then the force would couple to the “charge” (mass) as in elec-
tromagnetism,
2 < AD
F=-NA
hence with A° = gz,
W = gM (10.3)
independent of T.

3. If gravitation were a scalar field, then we would vary
— 2 O —_ \_\ N 2
= -gne’ + s80L -G xGilc
to find
® ~ LA @
F=-RsO -0 .

That is, the weight would decrease with temperature:
W mg - g2 NigTS. (10.4)
& g
Also, we would find that if the field were a scalar the source would have to be a scalar also,
because the field equation would have to be the (Lorentz-invariant) generalization of New-

ton’s Law of Universal Gravitation,
.07 = 4ps
hence s would be p T™},,. But for the electromagnetic field, T"},, = 0. That is, the electro-

magnetic contribution to the mass-energy of a body could not contribute to its gravita-
tional mass.

4. A tensor gravitational field would agree with the Principle of equivalence: as we saw in the
homework solutions, the Lagrangian for a slowly moving body,

2 B @ s 2 h(r)
L »-mc Ol-ﬁxuk - mm
Q- Xl

predicts a gravitational force proportional to the energy content,
°_ & _hm 9

F=-N TR .
g“O-ﬁxukzg
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We therefore conclude the gravitational field must be represented by a second-rank tensor, ™. We
therefore seek a field equation like

j™ =-4pGT™, (10.5)

wherej ™ is a tensor constructed from the (tensor) gravitational potential ™" by the usual operations

of differentiation and/or multiplication by the Minkowski tensor h™.

The source term in the field equation must also be a rank-2 tensor, whose only reasonable candidate

: m
is the energy-momentum tensor, T

Clearly, j ™ must satisfy

jme=gm (10.6)
and

Tmi ™ = 0. (10.7)
Equation 10.7 follows because

7, T™ = 0.

Now how can we construct j ™ ? Suppose we start with ™ (which we may obviously assume

symmetric); what kinds of terms can we make out of h™ under the restrictions:

j ™ must be linear in h™ ;

j ™ can involve derivatives no higher than second-order.

Let
j m _ mZ hl’Tﬂ + m,Zhrm hkk + (1) ﬂkﬂk hrm + bg-[nﬂk hkn+ﬂnﬂk hﬂkg +
+ eI h<, + dh™ g h', + eh™ g g, A (10.8)
We have chosen the coefficient of ﬂkﬂk h™ to be unity to set the overall scale of h™ .

Since gravitation is observed to act at least over distances of order of the radius of globular clusters,
we may surmise it is a long range force and that the mass terms are negligible:
m=m’ =0.

Then from Eq. 10.7 we have
9 ™ =0 = T T.h™ (1 +b) + (b+e) T M + (c+d) "IN h, (109

Hence
1+b =0
b+e =0 (10.10)
c+d =0.
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Thus

+ o h”"‘ﬂk‘ﬂkgh'l . (10.11)

The only free parameter-—after linearity in h™ and the conservation of T™ are required (a form of
gauge condition) --is C. The question we must answer next is, “What does ¢ stand for?” Can we choose
¢ arbitrarily or is it physical ?

Consider the “gauge” transformation

™ ® h™ - Cch™h (10.12)
where
df
h=n,
and similarly with h. Since h™ hon = 4, we see
h® h(l-4C); (10.13)
so that

7™ = R ™ - ikl h "+ e, hNnngf h™ 9§, 1 b+

+@C+c(1- 400 gMM- h™ g dh . (10.14)
Writing
¢'=2C +c(l- 4C),

we see that | ™ is the same function of h ™ as | ™ is of h™, except with ¢ replaced by €. Obviously
we can make C anything we want it to be. For example, choosing

_ C
c= 2(2¢- 1)’
we can make ¢ = 0 and simply drop this term; alternatively, we could let
c-1
C=z=—
2(2c- 1)’

making ¢ = 1. We choose the latter, obtaining the linearized, Lorentz-invariant gravitational field
equations

(10.15)
+ gﬂ'ﬂn_ thn ﬂkﬂk8h|| - _4p-|-rm
Equation 10.15 is invariant under the gauge transformation
h™ ® h”"+%gﬂ"L”+‘n”L”H= h™. (10.16)

We leave the proof as an exercise for the student.
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