
Linear field approximation to gravitation III

Deflection of a particle by gravitational field 
We imagine a particle that is deflected by a small angle, owing to a near collision with a source of
gravitation, as shown below.

Case 1: Newtonian gravitation 

Assume the scattering is in the x-z plane. Newton’s 2nd law gives (we assume the gravitational mass
of the particle is its total energy ε).

dpx

dt
  =  Fx  =  

−MGε b


b2  +  z2



3⁄2
(12.1) 

which we integrate (using dt  ≈  dz/v) to get

∆ px  =  ∫  
−∞

+∞
Fx dt  ≈  

−MGε
v

 ∫  
−∞

+∞
  

b dz


b2 + z2



3⁄2
 . (12.2) 

The angular deflection is (for small angles)

∆θ  ≈  
∆px

|p→|
  ≈  

−MG
v2 b

  ∫  
−∞

+∞
dζ (1 + ζ2)

−3⁄2
  =  

−2MG
v2 b

 . (12.3) 

Remember Eq. 12.3----we shall return to it. 

Thus, the Newtonian theory predicts a net angular deflection of a massless particle (v=c) by

∆θ  ≈  
−2MG

c2 b
 . (12.4)
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Case 2: General-relativistic prediction 

We saw in Lecture 11 that the field of a static source with mass M is 

h00  =  1
2
ϕ00  =  

−2MG
r

hkk  =  − 1
2
 ηkk ϕ  =  h00

(12.5) 

We found the equation of motion of a test particle to be
d
dτ

 Uµ  +  hµν 
d
dτ

 Uν  +  UκUν 
∂hµν

∂ξκ
  −  1

2
 UκUν 

∂hκν

∂ξµ
  =  0 (12.6)

and we agreed to neglect hµν 
d
dτ

 Uν as being of order (h)2----which we are already neglecting in making

a linear approximation. Thus to this order,

d
dτ

 Uµ  +  UκUν 
∂hµν

∂ξκ
  −  1

2
 UκUν 

∂hκν

∂ξµ
  =  0 . (12.7) 

We now insert Eq. 12.5 into Eq. 12.7, component by component. Initially,

Uµ  =  











γ
0
0
uγ










 , Uµ  =  











γ
0
0

−uγ










(12.8)

where, as usual, γ  =  
1

√ 1 − u2  . 

Thus, 
d2z
dτ2  −  γ2 u2 ∂z h  +  1

2
 γ2 ∂z h  +  1

2
 γ2 u2 ∂z h  =  0 ,

and similarly for 
d2t
dτ2 and 

d2x
dτ2; that is,

d2z
dτ2  +  1

2
 ∂zh  =  0

d2t
dτ2  +  uγ2 ∂zh  =  0

d2x
dτ2  +  1

2
 (1 + u2) γ2 ∂zh  =  0  .

(12.9)

The third of equations 12.9 follows because Ux may be considered always small relative to Uz. 
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From Eq. 12.9 we see Uz  ≈  const., hence we can integratethe equation for 
d2x
dτ2 to get 

dux

dt
  +  1

2
 (1 + u2) γ ∂zh  =  0 , (12.10)

or since dt  ≈  dz/u , 

∆ux  ≈  − 1
2
 (1 + u2) γ ∫  

−∞

+∞
 

2MGx dz

u x
2 + z2



3⁄2
 

which gives the angular deflection

∆θ  ≈  
∆ux

u
  =  − (1 + u−2) 

2MG
b

 . (12.11)

We see that for light-like particles,

∆θ  ≈  
−4MG

b
 , (12.12)

which is twice the Newtonian prediction. It is interesting that Einstein first gave the Newtonian result
(1911) and only later gave the correct result . The psychological impact would have been far less,
had the measurement of the deflection of light rays by the Sun been carried out between 1911 and
1916, rather than in 1919. 
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Linear field approximation to gravitation II 

Gravitational field of a distribution of matter 
Recall that we had derived the field equation, by analogy with electromagnetism, 

∂κ∂κ hµν  −  ∂µ∂κ hκν + ∂ν∂κ hµκ
  +  ηµν ∂κ ∂λ hκλ  +    

+  ∂µ∂ν − ηµν ∂κ∂κ

 hλ

λ  =  −KTµν
(10.15) 

Eq. 10.15 is invariant under the gauge transformation 

hµν  →  hµν  +  
1
2

 ∂µΛν + ∂ν Λµ
  =  h

~
 µν (10.16) 

Assume the gauge condition

∂µ h
µν − 1

2
 ηµν h   =  0 (11.1) 

(we can always pick a gauge function Λ(x) such that this is so). 

Then the field equ’ns become

∂κ∂κ hµν  −  1
2
 ηµν h   =  −KTµν . (11.2) 

Let 

ζµν   =
df

   hµν  −  1
2
 ηµν h

so that 

ζ  =  h  −  1
2
 × 4 × h  =  −h

ζµν  =  hµν  +  1
2
 ηµν ζ

hµν  =  ζµν  −  1
2
 ηµν ζ  .

It is much easier to calculate ζ from
∂κ∂κ ζµν  =  −KTµν (11.3) 

than hµν from Eq. 11.2. 

Example
We shall now calculate the gravitational field of a point mass. The energy-momentum tensor of a
point particle at rest is
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Tµν  =  













Mδ(3)(x→)
0
0
0

    

0
0
0
0

    

0
0
0
0

    

0
0
0
0

  













(11.4) 

giving

−∇2 ζ00 (x→)  =  −KM δ(3) (x→) (11.5) 

so

ζ00 (x→)  =  −  
KM

4π|x→|
 . (11.6) 

We see that ζ  =  ζ00, so that h00  =  1
2
 ζ00. 

Equation of motion of a test particle 
Newton’s 2nd Law for a test particle† of mass m in the above field is

dp→

dt
  =  −∇ 





−GMm
|x→|





(11.7) 

or 
d
dt

 

m

u→

√1 − u→ ⋅ u→



  =  −m 

4πG
K

 ∇ ζ00  =  −m 
8πG

K
 ∇ h00

which could be expressed as 

δ ∫ dt L(x→ (t), u→ (t) )  =  0

where 

This is no good! The Lagrangian (times dt) is suppose to be a Lorentz scalar. How can we make the
h00 term into a scalar? 

Clearly the right way to do this is

h00 dt  →  hµν UµUν dτ . (11.8)

It will then be convenient to rewrite tha action as

 

A  →   − ∫ dτ 


1
2
 m ηµν  +  m 

16πG
2K

 hµν


 UµUν . (11.9)

If we choose K  =  16πG and call 
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ηµν  +  hµν  =
df

   gµν, 

we see that

L  =  − 1
2
 m ηµν  +  

16πG
K

 hµν
 UµUν

has the form of a metric in a curved space. This is one way we can recognize that gravitation can be
identified with geometry. 

Why gravitation ⇔ geometry
The Principle of Equivalence says that it is impossible to distinguish gravitational effects from
accelerations. Consider a rotating disk. According to Special Relativity, its circumference (as
measured by a stationary observer) will be (g  =  Rω2) 

2πR √ 1  −  (Rω)2/c2   =  2πR √ 1  −  gR/c2  .

However, the radius is always perpendicular to the velocity, hence is the same in the stationary system
as in the rest frame of the disk. In consequence, the geometrical constant π’ measured in an
accelerated frame must differ from π in an unaccelerated frame: 

π’  =  π √ 1  −  gR/c2  . 

If we express the effect in terms of the centrifugal potential energy per unit mass, 

ϕ  =  1
2
 (Rω)

2

we have
π’  =  π √ 1  −  2ϕ/c2  . (11.10) 

That is, a gravitational potential affects the geometry (because we cannot tell one kind of acceleration
from another). 

Relativistic motion in a gravitational field
We now consider the relativistic equation of motion of a test particle: 

d
dτ

 




∂L
∂Uµ




  −  

∂L
∂ξµ

  =  0 . (11.11) 

Ignoring the factor 1
2
 m,

d
dτ

 gµν Uν

  −  1

2
 UκUν 

∂hκν

∂ξµ
  =  0 . (11.12) 

Now, 

d
dτ

 gµν Uν

  =  

d
dτ

 Uµ  +  hµν 
d
dτ

 Uν  +  UκUν 
∂hκν

∂ξµ
(11.13) 

so, to leading order (in gravitational problems, kinetic and potential energies are usually comparable,

so hµν 
d
dτ

 Uν is a correction of order ζ2),
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d
dτ

 Uµ  +  UκUν 
∂hκν

∂ξκ
  −  1

2
 UκUν 

∂hκν

∂ξµ
  =  0 . (11.14) 

In the next lecture we shall look at some consequences of Eq. 11.14, both for particle motion and
for scattering light by a gravitational field. 
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L  =  −m √ 1  −   u→ ⋅ u→   −m h00 
8πG

K
 .

Scalar Tensor
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