Gravitation and Cosmology
Lecture 12: Linear field approximation to gravitation III

Linear field approximation to gravitation lli

Deflection of a particle by gravitational field
We imagine a particle that is deflected by a small angle, owing to a near collision with a source of
gravitation, as shown below.
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Case 1: Newtonian gravitation

Assume the scattering is in the X-z plane. Newton’s 2nd law gives (we assume the gravitational mass
of the particle is its total energy €).
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which we integrate (using dt » dz/v) to get
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The angular deflection is (for small angles)
Dp* -MG ¥ 2 -2MG
» o » dz(1+z = . (12.3)
D I V' b O—¥ ( ) V' b

Remember Eq. 12.3---we shall return to it.

Thus, the Newtonian theory predicts a net angular deflection of a massless particle (v=C) by

- 2MG
. 12.4
Dg » b (12.4)

46



Gravitation and Cosmology
Deflection of a particle by gravitational field

Case 2: General-relativistic prediction

We saw in Lecture 11 that the field of a static source with mass M is
po0 = Ljoo _ - MG

2 r
(12.5)
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We found the equation of motion of a test particle to be
d m, ,md Tn™ fh<"

—u'+h"—u, +yu — - -yu = 12.
and we agreed to neglect h™ % U,, as being of order (h)%--which we are already neglecting in making
a linear approximation. Thus to this order,
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We now insert Eq. 12.5 into Eq. 12.7, component by component. Initially,
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where, as usual, g = O

Thus,

dZ
Iﬁ - duLh+ g h g Ui Ln =0,

2 2
and similarly for — and d—z; that is,
dt dt
d%z 1 _
P +3 ,h =0
it

ot ug fh = 0 (12.9)
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The third of equations 12.9 follows because U* may be considered always small relative to U’

47



Gravitation and Cosmology
Lecture 12: Linear field approximation to gravitation III

2
From Eq. 12.9 we see U* » const., hence we can integratethe equation for i’ to get

W ey gh = 0 (12.10)
dt 2( )gZ - Y .

or since dt » dz/u,
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which gives the angular deflection
Du* MG

Dy » == =- (1 +u?) b (12.11)
We see that for light-like particles,
DY » ““k\)"G, (12.12)

which is twice the Newtonian prediction. It is interesting that Einstein first gave the Newtonian result
(1911) and only later gave the correct result . The psychological impact would have been far less,

had the measurement of the deflection of light rays by the Sun been carried out between 1911 and
1916, rather than in 1919.
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Linear field approximation to gravitation |

Gravitational field of a distribution of matter
Recall that we had derived the field equation, by analogy with electromagnetism,

(10.15)
+ é%rrﬂn_ ™ ﬂkﬂkghll = _KT™
Eq. 10.15 is invariant under the gauge transformation
h™ ® h™ +%gn"L”+‘ﬂ”L”H= h™ (10.16)

Assume the gauge condition
- Ilpmho =
ﬂmgm > h hﬂ 0 (11.1)
(we can always pick a gauge function L (X) such that this is so).

Then the field equ’'ns become

T @™ - Zh™h8 = -KT™. (11.2)
Let
df
z™ = p™ . Lpmy
so that
chologh=
z=h--"4 h=-h

™ =zm- lpmy
2 )
It is much easier to calculate z from
™9, z™ = -KT™ (11.3)
than h™ from Eq. 11.2.

Example
We shall now calculate the gravitational field of a point mass. The energy-momentum tensor of a

point particle at rest is
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gﬁ/ld@)&) 0000
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K222 &) = -kMd® &) (11.5)
SO
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0= Sl (1.6
We see that z = zOO, so that h% = %200.
Equation of motion of a test particle
Newton’s 2nd Law for a test particle” of mass m in the above field is
d _ o ®eGMmo
e %)
or
dee G 6_ 4pG ¢ o0 _ _8PG & 00
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which could be expressed as
doitLG @, b)) =0

where

This is no good! The Lagrangian (times dt) is suppose to be a Lorentz scalar. How can we make the

h® term into a scalar?

Clearly the right way to do this is
hdt ® h™uU, U, dt. (11.8)

It will then be convenient to rewrite tha action as

A ® -(‘)ﬂgmh’m+m— U, . (11.9)

If we choose K = 16pG and call

t A “test particle” is one whose mass is so small we may neglect its contribution to the graviational
field.
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df
hrm + hI'TTI — gﬂﬂ

we see that

_ 1 m 16pG
L = -Emgﬁ

h™SU, U,

has the form of a metric in a curved space. This is one way we can recognize that gravitation can be
identified with geometry.

Why gravitation U geometry
The Principle of Equivalence says that it is impossible to distinguish gravitational effects from
accelerations. Consider a rotating disk. According to Special Relativity, its circumference (as

measured by a stationary observer) will be (§ = RWZ)
U RWPIE = 2pROT S GRIE

2pR O1
However, the radius is always perpendicular to the velocity, hence is the same in the stationary system
as in the rest frame of the disk. In consequence, the geometrical constant p’ measured in an
accelerated frame must differ from p in an unaccelerated frame:

\\\\\\

If we express the effect in terms of the centrifugal potential energy per unit mass,
. 1 2
] =5 (Rw)
we have
pr =pOTr ). (11.10)

That s, a gravitational potential affects the geometry (because we cannot tell one kind of acceleration
from another).

Relativistic motion in a gravitational field
We now consider the relativistic equation of motion of a test particle:

deefLo L
- =0. (11.11)
dt ?ﬂumg M
[gnoring the factor % m,
1 ﬂhkn
m g"‘ung 2 Uy, . =0. (11.12)
Now,
g"‘uo——u”w h”“dU + UU T (11.13)
dt dt " X,

s0, to leading order (in gravitational problems, kinetic and potential energies are usually comparable,

d ., . .
so h™ — U, is a correction of order 7Y,

dt
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d m
— U™+
LU BU
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nﬂ—Xk - EUk N =0. (11.14)
m

In the next lecture we shall look at some consequences of Eq. 11.14, both for particle motion and
for scattering light by a gravitational field.
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L=-mOr- %G -thO—S'f(G.
| |

Scalar Tensor
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