Linear field approximation, IV

Retardation of light in a gravitational field

We saw in $\S 12$ that the action for a particle in a weak field was

$$
\begin{equation*}
A=\int d \tau \Lambda\left(\xi, \partial_{\mu} \xi\right)=\int d \tau \frac{1}{2} m\left(\eta^{\mu v}+h^{\mu v}\right) U_{\mu} U_{v} \tag{13.1}
\end{equation*}
$$

where $U_{\mu}{ }_{\mu}^{d f} \frac{d \xi_{\mu}}{d \tau}$, so the canonical momentum is

$$
\begin{equation*}
p^{\mu} \stackrel{\text { df }}{=} \frac{\partial \Lambda}{\partial U_{\mu}}=m\left(U^{\mu}+h^{\mu v} U_{v}\right) \tag{13.2}
\end{equation*}
$$

and the equations of motion are

$$
\begin{equation*}
\frac{d p^{\mu}}{d \tau}=\frac{1}{2} m U_{\kappa} U_{v} \frac{\partial h^{\kappa v}}{\partial \xi_{\mu}} \approx \frac{1}{2} p_{\kappa} U_{v} \frac{\partial h^{\kappa v}}{\partial \xi_{\mu}}, \tag{13.3}
\end{equation*}
$$

where eq. 13.3 follows from our agreement to ignore terms of higher order in h. Thus for a particle travelling at near-light speed (or at c , for that matter) and weakly deflected by a gravitational field, recalling that for a static source

$$
h^{\mu \nu}=\left(\begin{array}{cccc}
\frac{-2 M G}{r} & 0 & 0 & 0 \\
0 & \frac{-2 M G}{r} & 0 & 0 \\
0 & 0 & \frac{-2 M G}{r} & 0 \\
0 & 0 & 0 & \frac{-2 M G}{r}
\end{array}\right)
$$

we have

$$
\begin{align*}
& d p^{2}=-\frac{1}{2} p^{0} d t \frac{\partial h^{00}}{\partial z}-\frac{1}{2} p^{2} d z \frac{\partial h^{00}}{\partial z} \tag{13.4}\\
& d p^{0}=0
\end{align*}
$$

(static source, $\partial_{t} h^{00}=0$). Since $d t \approx d z$ for $v \approx c$, we have

$$
\begin{equation*}
d p^{2} \approx-\frac{\partial h^{00}}{\partial z} p^{0} d z \tag{13.5}
\end{equation*}
$$

We may integrate w.r.t. z to get

$$
\begin{equation*}
p^{2}(z) \approx p^{2}(\pm \infty)-p^{0} h^{00}(r) . \tag{13.6}
\end{equation*}
$$

The momentum at $z= \pm \infty$ is $\approx p^{0}$, hence we may say the group velocity of the particle at position z is

$$
\begin{equation*}
v(z) \stackrel{d f}{=} \frac{d p^{0}}{d p^{2}}=\left(1+\frac{2 M G}{r}\right)^{-1} . \tag{13.7}
\end{equation*}
$$

G ravitation and C osmology

Retardation of light in a gravitational field

The time delay in passing the object at impact parameter b is then given by the integral of the time to go a distance dz , relative to what it would have been with no source of gravitation:

$$
\begin{equation*}
\Delta t=\int_{z_{1}}^{z_{2}}\left(\frac{d z}{v(b, z)}-\frac{d z}{1}\right) \tag{13.8}
\end{equation*}
$$

The integral 13.8 can be performed in closed form, giving! \dagger -

$$
\Delta t=\frac{2 M_{\odot} G}{c^{3}}\left[\sinh ^{-1}\left(Z_{2} / b\right)-\sinh ^{-1}\left(Z_{1} / b\right)\right]
$$

If $\left|Z_{1,2}\right| \gg b$, then the above expression simplifies to

$$
\Delta t \approx \frac{2 M_{\odot} G}{c^{3}} \log \left(\frac{4 Z_{2}\left|Z_{1}\right|}{b^{2}}\right)
$$

With Earth and Venus shown as in the drawing to the right, we see that the impact parameter b and the distances $Z_{1,2}$ are given by

$$
\begin{aligned}
& b=\frac{r R \sin \theta}{\sqrt{R^{2}+r^{2}-2 r R \cos \theta}} \\
& Z_{2}=R \frac{R-r \cos \theta}{\sqrt{R^{2}+r^{2}-2 r R \cos \theta}} \\
& Z_{1}=-r \frac{r-R \cos \theta}{\sqrt{R^{2}+r^{2}-2 r R \cos \theta}}
\end{aligned}
$$

where in terms of the orbital periods and time measured from opposition $!\ddagger \bullet$ the angle between the radius vectors of the planets is

$$
\theta=\pi+2 \pi\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right) \mathrm{t}
$$

In terms of these quantities the time delay can be written

$$
\Delta t \approx \frac{2 M_{\odot} G}{c^{3}} \log \left(\frac{4|\cos \theta-\mathrm{r} / \mathrm{R}| 1-\mathrm{r} / \mathrm{R} \cos \theta \mid}{\sin ^{2} \theta}\right) .
$$

This function is plotted on the next page for the Earth-Venus measurement, in units of $\frac{2 M}{c^{3}}$.

[^0]
G ravitation and Cosmology

Lecture 13: Linear field approximation, IV

Measurements by Shapiro, et al. ${ }^{\dagger}$ of time delays in radar echos from the planet Venus are plotted below together with the theoretical curve(s) derived above.

[^1]
[^0]: $\dagger \mathrm{N}$ ote we have added the explicit factors of c required for dimensional consistency.
 \ddagger When the Earth and V enus are on opposite sides of the Sun it is called a "superior conjunction" for reasons that go deep in the history of astronomy.

[^1]: \dagger I.I. Shapiro, et al., Phys. Rev. Lett. 26 (1971) 1132.

