
General tensor analysis 

Reading: 
Mathews & Walker, Mathematical Methods of Physics, ch. 16. 
S. Weinberg, Gravitation and Cosmology, ch. 3 & 4. 
Ohanian & Ruffini, Gravitation and Spacetime, ch. 6.
McConnell, Applications of Tensor Analysis, ch. XI, XII
(Don’t try to read all this in one afternoon!) 

We begin with some obvious definitions. First, instead of linear coordinate transformations, we look
at general ones: 

x
~µ  =  x

~µ (x0, x1, x2, x3) (16.1) 

We consider a point P with coordinates x, a point Q with coordinates x + dx. In the tilde’d coordinates,
P has coordinates x~, Q has x~ + dx~. The model of a contravariant vector is the transformation law 

dx
~µ  =  





∂x
~µ

∂xν




 dxν (16.2a) 

The model of a covariant vector is, as before, 

ϕ~, µ  ≡  
∂ϕ
∂x~µ

  =  
∂ϕ
∂xν 





∂xν

∂x
~µ




  =  





∂xν

∂x
~µ




  ϕ, ν . (16.2b) 

An object with the transformation law

A
~

ρσ …
µν …  =  





∂x
~µ

∂xκ




 




∂x
~ν

∂xλ




 … 





∂xα

∂x
~ρ




 




∂xβ

∂x
~σ




  Aαβ …

κλ …  




∂x
∂x~

 




w

(16.3) 

is called a relative tensor of weight w. Note

d4x~  =  d4x  




∂x~

∂x
 



  ≡  d4x  





∂x
∂x~

 




−1

 ; (16.4) 

thus d4x is a relative scalar of weight --1.

 

A relative tensor T µν of weight +1 is called a tensor density: 

∫ d4x T µν  =  Tµν (16.5) 

is thus a tensor of weight 0.

A general space suitable for physical laws must have a fundamental notion of distance between points.
This idea must be invariant under coordinate transformations or it is not fundamental. Thus we
suppose ∃ a tensor gµν ,  ∋ 
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(ds)2  =  gµν dxµ dxν . (16.6) 

is invariant.

The derivative of a tensor 
A covariant vector obeys the transformation law

v~µ  =  




∂xκ

∂x
~µ




  vκ . (16.7) 

Differentiating with respect to x
~ν

∂
∂x
~ν  v~µ  =

df

   v~µ,ν   =  




∂2xκ

∂x
~µ ∂x

~ν




  vκ  +  





∂xκ

∂x
~µ




  




∂xλ

∂x
~ν




  vκ , λ . (16.8) 

Because of the extra term 




∂2xκ

∂x
~µ ∂x

~ν




  vκ , we see vκ,λ is not a tensor. 

This leads us to the notion of covariant derivative†: first,

Aµ  =  




∂x
~σ

∂xµ




  A
~

σ . (16.9)

Now defining
dAµ  =  Aµ(x + dx)  −  Aµ(x)

=  




∂x
~σ

∂xµ




(x + dx)  A

~
σ(x + dx)  −  





∂x
~σ

∂xµ




(x)  A

~
σ(x) (16.10) 

we see that

dAµ  =  




∂x
~σ

∂xµ




  dA

~
σ  +  





∂2x
~σ

∂xµ ∂xν




  




∂xν

∂x
~κ




  A
~

σ dx
~κ (16.11) 

That is, as expected, dAµ is not a vector.

 

This failure suggests that we try to find an object D Aµ that will transform like a covariant vector. To
guess what form we should try, we need to know what went wrong.

As the figure above shows, when we move from point x to point x+dx, the coordinate system xµ might
change its orientation. For example, imagine a coordinate system erected on a surface in three
dimensional space----say the surface of a sphere. We have at each point two orthogonal directions,

Gravitation and Cosmology
The derivative of a tensor 

72
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êθ and êϕ ; but these vectors change orientation relative to a three-dimensional Cartesian system, as
we move from one point to another on the sphere. 

Now, suppose we have a vector that points in a constant direction in 3-space; it will have the same
direction at x and at x+dx. But its components with respect to the local coordinate system will appear
to have changed because the local system has rotated! We want a definition of a differential D Aµ

that gives zero for a vector that is constant with respect to a fixed coordinate system in which the
curvilinear system is embedded. 

One way to do this is to calculate the total change in Aµ going from x to x+dx, and subtract from it
the part of the change due solely to the change in the coordinate system. We shall do just this later
on. 

But for now, let the x be embedded in a Cartesian space of 1 more dimension, so the coordinates are
functions of ξa : xµ  =  xµ (ξ). Then

xµ + dxµ  =  xµ(ξ)  +  
∂xµ

∂ξa dξa (16.12)

and
∂(xµ + dxµ)

∂xλ   =  δµ
λ   +   

∂2xµ

∂ξa ∂ξb  
∂ξa

∂xλ  
∂ξb

∂xκ  dxκ . (16.13) 

Now, from our general transformation law, we see that by construction,

D Aµ  =  Aµ(x + dx)  
∂(xµ + dxµ)

∂xλ   −  Aµ(x) (16.14) 

is a vector (the reason is that we have here treated the point Q as a change of coordinates).

Hence, applying Eq. 16.13 we find 

D Aµ  =  



Aµ,ν   +   

∂2xλ

∂ξa ∂ξb  
∂ξa

∂xµ  
∂ξb

∂xν  Aλ



  dxν (16.15) 

Aµ

same

Aµ

P=x

Q=x+dx
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is a vector. 

To proceed, we now eliminate reference to the special embedding coordinates ξa, in favor of the
intrinsic coordinates xµ. That is, we want to express

Bµν
λ    =

df

    
∂2xλ

∂ξa ∂ξb  
∂ξa

∂xµ  
∂ξb

∂xκ (16.16) 

(which we notice is homogeneous in the ξ but not in x) in terms of the intrinsic coordinates. 

The only thing we have to play with is the metric tensor gµν(x). We have the invariant interval

gµν(x) dxµ dxν  ≡  ηab dξa dξb (16.17) 

where ηab is constant. Note also that

∂xλ

∂ξa  
∂ξa

∂xµ  ≡  δλ
µ (16.18) 

so, since (obviously!)
∂ν δλ

µ  =  0 , 

we have 
∂2xλ

∂ξa ∂ξb

  
∂ξa

∂xµ  
∂ξb

∂xν   +   
∂xλ

∂ξa  
∂2ξa

∂xµ ∂xν  =  0 . 

Thus, the vector D Aµ may be re-expressed as

D Aµ  =  



Aµ,ν   −   

∂xλ

∂ξa  
∂2ξa

∂xµ ∂xν  Aλ



  dxν . (16.19)

How do we eliminate





λ
µ ν




   =

df

    
∂xλ

∂ξa  
∂2ξa

∂xµ ∂xν ? 

(The {} is called a Christoffel symbol.) Consider something related to {}: 

µν, σ   =
df

   gλσ 


λ
µ ν





(16.20)

gλσ  =  ηab  
∂ξa

∂xλ  
∂ξb

∂xσ (16.21)



µν, σ


  =  ηab  

∂2ξa

∂xµ ∂xν  
∂ξb

∂xσ . (16.22) 

Differentiating Eq. 16.21 we find
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∂σ gµν  =  ηab  ∂σ  




∂ξa

∂xµ  
∂ξb

∂xν




  =  ηab  





∂2ξa

∂xµ ∂xσ  
∂ξb

∂xν   +  
∂ξa

∂xµ  
∂2ξb

∂xν ∂xσ





=  

µσ, ν


  +  


νσ, µ


  , (16.23) 

and by permutation of indices,

∂ν gµσ  =  

µν, σ


  +  


νσ, µ



∂µ gσν  =  

µσ, ν


  +  


µν, σ


  .

We seek a linear relation that eliminates the unwanted terms and keeps the one we are looking for:

A ∂σ gµν  +  B ∂ν gµσ  +  C ∂µ gσν  =  

µν, σ


  ,

or

A 

 

µσ, ν


  +  


νσ, µ


 

   +   B 


 

µν, σ


  +  


νσ, µ


 

   +   C 


 

µν, σ


  +  


µσ, ν


 

  =  


µσ, ν


 .

Therefore,
A + C  =  0
A + B  =  0
B + C  =  1  .

The solution is thus A  =  −  
1
2

 , B  =  C  =  
1
2

 , or 



µν, σ


  =  

1
2

 

 ∂ν gµσ  +  ∂µ gσν  −  ∂σ gµν


  . 

Thus




λ
µ ν




  =  gλσ  µν, σ  =  

1
2

 gλσ  

 ∂ν gµσ  +  ∂µ gσν  −  ∂σ gµν


  . (16.24) 

We may therefore write

D Aµ  =  

Aµ,ν   −   



λ
µ ν




  Aλ




  dxν . (16.25) 

Since dxν is clearly a tensor, the bracketed quantity must be one also. That is, the covariant derivative
of a vector field is defined to be 

Aµ; ν   =
df

   Aµ, ν  −  


λ
µ ν




 Aλ . (16.26) 
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The Christoffel symbol 


λ
µ ν




 has now been defined entirely in terms of intrinsic quantities, namely

the metric tensor and its derivatives with respect to the coordinates. We see that in Cartesian
(Minkowski) space, the Christoffel symbol vanishes and Aµ; ν  =  Aµ, ν .

Exercises for the bold: 
1. Show that Aµ; ν transforms properly. 

2. Derive the Christoffel symbol without making use of an embedding space.
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