Parallel Displacement of a Vector

Reading: Mathews \& Walker, Mathematical Methods of Physics, ch. 15.
S. Weinberg, Gravitation and Cosmology, ch. $3 \& 4$.

Ohanian \& Ruffini, Gravitation and Spacetime, ch. 5 \& 6.

Freely falling test object

We saw in §16 that the Christoffel symbol

$$
\left\{\begin{array}{c}
\lambda \tag{17.1}\\
\mu \nu
\end{array}\right\} \stackrel{d f}{=} g^{\lambda \sigma}[\mu v, \sigma]=\frac{1}{2} g^{\lambda \sigma}\left[\partial_{\mu} g_{\sigma v}+\partial_{v} g_{\sigma \mu}-\partial_{\sigma} g_{\mu v}\right]
$$

appears in the covariant derivative of a vector

$$
A_{\mu ; v}=A_{\mu, v}-\left\{\begin{array}{c}
\lambda \tag{17.2}\\
\mu \nu
\end{array}\right\} A_{\lambda} .
$$

We remark that we can determine the transformation law of $\left\{\begin{array}{c}\lambda \\ \mu \nu\end{array}\right\}$ from that for $A_{\mu, \nu}$: from Eq. 16.8, we have

$$
\left\{\begin{array}{c}
\lambda \tag{17.3}\\
\mu \nu
\end{array}\right\}^{\prime}=\left\{\begin{array}{c}
\kappa \\
\sigma \alpha
\end{array}\right\} \frac{\partial x^{\prime} \lambda}{\partial x^{\kappa}} \cdot \frac{\partial x^{\sigma}}{\partial x^{\prime \mu}} \cdot \frac{\partial x^{\alpha}}{\partial x^{\prime} v}-\left(\frac{\partial^{2} x^{\prime} \lambda}{\partial x^{\sigma} x^{\alpha}}\right) \frac{\partial x^{\sigma}}{\partial x^{\prime \mu}} \cdot \frac{\partial x^{\alpha}}{\partial x^{\prime} v} .
$$

We now look at the equations of motion for a freely falling "test" object, which we expect to obey the variational principle

$$
\begin{equation*}
\delta \int d \tau=\delta \int_{a}^{b} d p\left(g_{\mu v} \frac{d x^{\mu}}{d p} \cdot \frac{d x^{v}}{d p}\right)=0, \tag{17.4}
\end{equation*}
$$

where p is some arbitrary parameterization of the space-time curve $x^{\mu}(p)$. As we have already seen, masses generate gravitational fields, which we have agreed to subsume into changes of the metric tensor (from the Minkowski tensor of flat space). A test body is thus one whose effect on the metric can be neglected.

We vary by adding to $x^{\mu}(p)$ an arbitrary small displacement $\zeta^{\mu}(p)$ that vanishes at $p=a$ and at $p=b$. Thus,

$$
\begin{equation*}
\frac{1}{2} \int_{a}^{b} d p\left(g_{\mu v} \frac{d x^{\mu}}{d p} \frac{d x^{v}}{d p}\right)^{-1 / 2}\left[2 g_{\mu v} \frac{d x^{\mu}}{d p} \frac{d \zeta^{v}}{d p}+\partial_{\lambda} g_{\mu v} \frac{d x^{\mu}}{d p} \frac{d x^{v}}{d p} \zeta^{\lambda}\right]=0 . \tag{17.5}
\end{equation*}
$$

But

$$
\left(g_{\mu \nu} \frac{d x^{\mu}}{d p} \frac{d x^{v}}{d p}\right)^{-1 / 2} \equiv \frac{d p}{d \tau},
$$

hence change variables from p to τ, and write

G ravitation and C osmology

Parallel displacement of a vector along a curve

$$
\begin{align*}
0 & =\frac{1}{2} \int_{a}^{b} d \tau\left[2 g_{\mu \nu} \frac{d x^{\mu}}{d p} \frac{d \zeta^{v}}{d p}+\partial_{\lambda} g_{\mu \nu} \frac{d x^{\mu}}{d p} \frac{d x^{v}}{d p} \zeta^{\lambda}\right] \tag{17.6}\\
& =-\int_{a}^{b} d \tau\left[\frac{d}{d \tau}\left(g_{\mu \lambda} \frac{d x^{\mu}}{d \tau}\right)-\frac{1}{2} \partial_{\lambda} g_{\mu \nu} \frac{d x^{\mu}}{d \tau} \frac{d x^{v}}{d \tau}\right] \zeta^{\lambda} .
\end{align*}
$$

Thus,

$$
g_{\mu \sigma} \frac{d^{2} x^{\mu}}{d \tau^{2}}+\left(g_{\mu \sigma, v}-\frac{1}{2} g_{\mu \nu, \sigma}\right) \frac{d x^{\mu}}{d \tau} \frac{d x^{v}}{d \tau}=0
$$

or, on multiplying through by $g^{\lambda \sigma}$, we find

$$
\frac{d^{2} x^{\lambda}}{d \tau^{2}}+g^{\lambda \sigma}\left(g_{\mu \sigma, v}-\frac{1}{2} g_{\mu v, \sigma}\right) \frac{d x^{\mu}}{d \tau} \frac{d x^{\nu}}{d \tau}=0 .
$$

If we now note that

$$
g_{\mu \sigma, v} \equiv \frac{1}{2}\left(g_{\mu \sigma, v}+g_{v \sigma, \mu}\right)+\frac{1}{2}\left(g_{\mu \sigma, v}-g_{v \sigma, \mu}\right)
$$

and that the piece that is antisymmetric in $\mu \nu$,

$$
\frac{1}{2}\left(g_{\mu \sigma, v}-g_{v \sigma, \mu}\right)
$$

vanishes when contracted with the (symmetric) factor $\frac{d x^{\mu}}{d \tau} \frac{d x^{v}}{d \tau}$, then, clearly,

$$
\frac{d^{2} x^{\lambda}}{d \tau^{2}}+\left\{\begin{array}{c}
\lambda \tag{17.7}\\
\mu \nu
\end{array}\right\} \frac{d x^{\mu}}{d \tau} \frac{d x^{\nu}}{d \tau}=0 .
$$

This is the equation describing the behavior of a falling body. It agrees, to $0\left(h^{2}\right)$, with our previous resuult for the linearized gravitaional field, Eq. 11.14.

Parallel displacement of a vector along a curve

The equation 17.7 of a freely falling test body now brings us to the question of parallel displacement of a vector.

We see that in a system of coordinates ξ^{α} falling freely with the test object (so-called co-moving coordinates) the acceleration vanishes,

$$
\frac{d^{2} \xi^{\lambda}}{d \tau^{2}}=0
$$

hence the Christoffel symbol $\left\{\begin{array}{c}\lambda \\ \mu \nu\end{array}\right\}$ vanishes also.

G ravitation and C osmology

Lecture 17: Parallel Displacement of a Vector

The significance of freely falling coordinates is that, in the neighborhood of a point we can consider the space free of gravitational effects ${ }^{\dagger}$. Since the derivatives of the metric tensor with respect to coordinates can be expressed as Christoffel symbols, the metric tensor can obviously be considered Minkowskian in such a system, up to terms in its second derivatives:

$$
\begin{aligned}
& g_{\mu v, \sigma}=[\mu \sigma, v]+[v \sigma, \mu]=0, \\
& \therefore g_{\mu v} \approx \eta_{\mu v}+\frac{1}{2} \frac{\partial^{2} g_{\mu v}}{\partial x^{\kappa} \partial x^{\lambda}} \xi^{\kappa} \xi^{\lambda} .
\end{aligned}
$$

That is, the space is locally flat, and deviations from flatness are quadratic in the coordinates.

Now consider a vector \widetilde{V}^{α} that is constant with respect to a freely falling system of coordinates ξ^{α}; and a space curve $x^{\mu}(p)$ (parameterized by an invariant parameter p---such as τ). Because

$$
\frac{d \widetilde{V}^{\alpha}}{d p}=0
$$

we can calculate the derivative of

$$
\begin{equation*}
v^{\mu}=\frac{\partial x^{\mu}}{\partial \xi^{\alpha}} \widetilde{V}^{\alpha} \tag{17.8}
\end{equation*}
$$

with respect to p , i.e. along the curve, in an arbitrary coordinate system:

$$
\begin{align*}
\frac{d V^{\mu}}{d p} & =\left(\frac{\partial^{2} x^{\mu}}{\partial \xi^{\alpha} \partial \xi^{\beta}}\right) \frac{\partial \xi^{\beta}}{d p} \widetilde{V^{\alpha}}=\left(\frac{\partial^{2} x^{\mu}}{\partial \xi^{\alpha} \partial \xi^{\beta}}\right) \frac{\partial \xi^{\alpha}}{\partial x^{\sigma}} \frac{\partial \xi^{\beta}}{\partial x^{\lambda}} \frac{d x^{\lambda}}{d p} V^{\sigma} \\
& \equiv-\left\{\begin{array}{c}
\mu \\
\sigma \lambda
\end{array}\right\} \frac{d x^{\lambda}}{d p} V^{\sigma} . \tag{17.9}
\end{align*}
$$

That is, the condition that V be "constant" when transported from one point to another along a curve, with respect to a "flat" space, is that

$$
\frac{d V^{\mu}}{d p}+\left\{\begin{array}{c}
\mu \tag{17.10}\\
\sigma \lambda
\end{array}\right\} V^{\sigma} \frac{d x^{\lambda}}{d p}=0 .
$$

Equation 17.10 is sometimes called the equation of parallel transport. Given a vector field $V^{\sigma}(X)$ whose value at the point $a^{\mu}{ }_{\text {is }} V^{\sigma}(a)$, and a space-time curve $x^{\mu}(p)$ joining the point $a^{\mu}=x^{\mu}(p)$ with another point $b^{\mu}=x^{\mu}(p+d p)$, we can construct a $4-$ tuple $\bar{V}^{\sigma}(p+d p) \cdots$ - defined with respect to the (different) coordinate system at b^{μ}...-that is parallel to the first in the above sense, via

$$
\bar{V}^{\sigma}(p+d p) \stackrel{d f}{=} \bar{V}^{\sigma}(p)-\left\{\begin{array}{c}
\mu \tag{17.11}\\
\sigma \lambda
\end{array}\right\} V^{\sigma} \text { (a) } \frac{d x^{\lambda}}{d p} d p,
$$

[^0]
G ravitation and C osmology

Parallel displacement of a vector along a curve
df
where, by definition, $\bar{V}^{\mu}(p)=V^{\mu}(a)$. The new 4 -tuple is indeed a vector:

$$
\begin{equation*}
\left.\frac{d}{d p}\left[\bar{V}^{\mu}(p)-\frac{\partial x^{\prime \mu}}{\partial x^{\sigma}} \bar{V}^{\sigma}(p)\right\}\right]=0 . \tag{17.12}
\end{equation*}
$$

Problem for the fearless:

Show Eq. 17.12 is correct. (Hint: use Eq. 17.3.)

Thus,

$$
\bar{V}^{\prime \mu}(p)-\frac{\partial x^{\prime} \mu}{\partial x^{\sigma}} \bar{V}^{\sigma}(p)=\text { constant } .
$$

At the point a^{β}

$$
\bar{V}^{\mu}=\frac{\partial x^{\prime \mu}}{\partial x^{\sigma}} V^{\sigma}(a)
$$

hence the constant is zero!

[^0]: \dagger This is where the Principle of Equivalence comes in, since gravitation and acceleration are evidently indistinguishable at a point.

