
Parallel Displacement of a Vector

Reading: Mathews & Walker, Mathematical Methods of Physics, ch. 15.

S. Weinberg, Gravitation and Cosmology, ch. 3 & 4.

Ohanian & Ruffini, Gravitation and Spacetime, ch. 5 & 6. 

Freely falling test object 
We saw in §16 that the Christoffel symbol 





λ
µν




  =

df

   gλσ [µν, σ]  =  1
2
 gλσ 


∂µ gσν  +  ∂ν gσµ  −  ∂σ gµν


(17.1)

appears in the covariant derivative of a vector

Aµ ; ν  =  Aµ , ν  −  


λ
µν




 Aλ . (17.2)

We remark that we can determine the transformation law of 


λ
µν




 from that for Aµ , ν : from Eq. 16.8,

we have





λ
µν





’
  =  



κ
σα




 
∂x’λ

∂xκ  ⋅ 
∂xσ

∂x’µ ⋅ 
∂xα

∂x’ν   −   




∂2x’λ

∂xσ xα




 

∂xσ

∂x’µ ⋅ 
∂xα

∂x’ν  . (17.3)

We now look at the equations of motion for a freely falling ‘‘test’’ object, which we expect to obey the
variational principle 

δ ∫ dτ   =   δ ∫  
a

b
dp 




gµν 

dxµ

dp
 ⋅ 

dxν

dp
 



  =  0 , (17.4)

where p is some arbitrary parameterization of the space-time curve xµ (p) . As we have already seen,
masses generate gravitational fields, which we have agreed to subsume into changes of the metric
tensor (from the Minkowski tensor of flat space). A test body is thus one whose effect on the metric
can be neglected.

We vary by adding to xµ (p) an arbitrary small displacement ζµ (p) that vanishes at p = a and at
p = b.  Thus, 

1
2
 ∫  

a

b
dp 




gµν 

dxµ

dp
 
dxν

dp
 




−1⁄2

  



2gµν 

dxµ

dp
 
dζν

dp
   +   ∂λ gµν 

dxµ

dp
 
dxν

dp
 ζλ 




  =  0 . (17.5) 

But




gµν 

dxµ

dp
 
dxν

dp
 




−1⁄2

  ≡  
dp
dτ

 , 

hence change variables from p to τ, and write 

Gravitation and Cosmology
Lecture 17: Parallel Displacement of a Vector

77



0  =  1
2
 ∫  

a

b
dτ  




2gµν 

dxµ

dp
 
dζν

dp
   +   ∂λ gµν 

dxµ

dp
 
dxν

dp
 ζλ 





   =  − ∫  
a

b
dτ  





d
dτ

 



gµλ 

dxµ

dτ
 



   −   1

2
 ∂λ gµν 

dxµ

dτ
 
dxν

dτ
 



 ζλ  .

(17.6) 

Thus, 

gµσ 
d2xµ

dτ2    +   

gµσ , ν   −   1

2
 gµν , σ




  

dxµ

dτ
  

dxν

dτ
  =  0

or, on multiplying through by gλσ, we find 

d2xλ

dτ2    +   gλσ 

gµσ , ν   −   1

2
 gµν , σ




 
dxµ

dτ
 
dxν

dτ
  =  0 .

If we now note that

gµσ , ν  ≡  1
2
 

gµσ , ν  +  gνσ , µ


   +   1

2
 

gµσ , ν  −  gνσ , µ


and that the piece that is antisymmetric in µν,

1
2
 

gµσ , ν  −  gνσ , µ


 ,

vanishes when contracted with the (symmetric) factor 
dxµ

dτ
  

dxν

dτ
 , then, clearly,

d2xλ

dτ2    +   


λ
µν




  

dxµ

dτ
  

dxν

dτ
  =  0 . (17.7)

This is the equation describing the behavior of a falling body. It agrees, to O(h2), with our previous
resuult for the linearized gravitaional field, Eq. 11.14.

Parallel displacement of a vector along a curve 
The equation 17.7 of a freely falling test body now brings us to the question of parallel displacement
of a vector.

We see that in a system of coordinates ξα falling freely with the test object (so-called co-moving
coordinates) the acceleration vanishes,

d2ξλ

dτ2   =  0 ,

hence the Christoffel symbol 


λ
µν




 vanishes also.
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The significance of freely falling coordinates is that, in the neighborhood of a point we can consider
the space free of gravitational effects†. Since the derivatives of the metric tensor with respect to
coordinates can be expressed as Christoffel symbols, the metric tensor can obviously be considered
Minkowskian in such a system, up to terms in its second derivatives:

gµν , σ  =  

µσ, ν


  +  


νσ, µ


  =  0 ,

∴   gµν  ≈  ηµν  +  1
2
 

∂2gµν

∂xκ ∂xλ ξκ ξλ  .

That is, the space is locally flat, and deviations from flatness are quadratic in the coordinates.

Now consider a vector V
~α that is constant with respect to a freely falling system of coordinates ξα;

and a space curve xµ (p) (parameterized by an invariant parameter p----such as τ).  Because
dV
~α

dp
  =  0 ,

we can calculate the derivative of

Vµ  =  
∂xµ

∂ξα V
~α (17.8)

with respect to p, i.e. along the curve, in an arbitrary coordinate system:
dVµ

dp
  =  





∂2xµ

∂ξα ∂ξβ




 
∂ξβ

dp
 V
~α  =  





∂2xµ

∂ξα ∂ξβ




  

∂ξα

∂xσ   
∂ξβ

∂xλ   
dxλ

dp
  Vσ

≡  − 


µ
σλ




  

dxλ

dp
  Vσ  . (17.9) 

That is, the condition that V be ‘‘constant’’ when transported from one point to another along a
curve, with respect to a ‘‘flat’’ space, is that

dVµ

dp
  +  



µ
σλ




  Vσ  

dxλ

dp
  =  0 . (17.10) 

Equation 17.10 is sometimes called the equation of parallel transport.  Given a vector field Vσ (x) whose
value at the point aµ is Vσ (a), and a space-time curve xµ (p) joining the point aµ  =  xµ (p) with another

point bµ  =  xµ (p+dp), we can construct a 4-tuple V
__

σ (p+dp)----defined with respect to the (different)
coordinate system at bµ----that is parallel to the first in the above sense, via

V
__

σ (p+dp)  =
df

   V
__

σ (p)   −   


µ
σλ




 Vσ (a)  

dxλ

dp
  dp , (17.11)
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† This is where the Principle of Equivalence comes in, since gravitation and acceleration are
evidently indistinguishable at a point.



where, by definition, V
__

µ (p)  =
df

   Vµ (a) . The new 4-tuple is indeed a vector:

d
dp

 V
__
’µ (p)   −   

∂x’µ

∂xσ   V
__

σ (p)}
  =  0 . (17.12) 

Problem for the fearless: 
Show Eq. 17.12 is correct. (Hint: use Eq. 17.3.)

Thus,

V
__
’µ (p)   −   

∂x’µ

∂xσ   V
__

σ (p)  =  constant .

At the point aβ 

V
__
’µ  =  

∂x’µ

∂xσ   Vσ (a)

hence the constant is zero!
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