Gravitation and Cosmology
Lecture 18: Grad, Div, Curl, and all that¥a

Grad, Div, Curl, and all that¥

Reading: Mathews & Walker, Mathematical Methods of Physics, ch. 15.
S. Weinberg, Gravitation and Cosmology, ch. 3 & 4.
Ohanian and Ruffini, Gravitation and Spacetime, ch. 6 & 7.

McConnell, Applications of Tensor Analysis, Ch. 12.

The generally covariant differential operators
The gradient operator is obvious, and we have already derived it. If ] (X) is a scalar field, then
dof o
- 1
- (18.1)
] m o

in fact transforms as a covariant vector under general coordinate transformations.

Next, consider the covariant curl defined by
df

aldg 11adu
CurlnAm: Am;n - An;m:Am,n ) An»m_ é.'\rm, ) ,[nnggAl
e 1 u
° Am,n - An m * (18.2)
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df
Finally, the divergence should generalize the flat-space result divV = Vnt m
df

divv = vm o vm o+ Moys, (18.2)
1
However,
imd _ 1 m . o 1o
,:'\m;g - Eg gm,s + gls,m' gm;,IHO Eg gm,s (18.3)

where we have used the antisymmetry in m of the terms ¢ - Oy, to drop them after

contraction with gm .

Now consider g, as a matrix G, with dG = g, 5 dx° ; then

N

Lmis _ 1 G dGh

%m;fvjdx =3 Trace é@ dGH. (18.4)
Let us call det(G) = - g (this is a standard notation, with the - sign introduced to make g positive);
then

_ g - eTrace [ 1()g(G) ] (185)
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(Eq. 18.5 is far from obvious, useful, and worth remembering. The proof is given below. For now, just

believe it!)

Thus

log(-g) = Tr dog(G)Y
and

Tr og(G +dG)[I = Tr[log(G)] + Tr Qog(1+G 'dG)Y
hence

. .. SO B
Iogg%g- dgg = Iogféegg + Tr.gB dGH

so that

|mu O
ey O = 3¢ gosl 0 0G0
or (we can now drop the - s1gn from O g)

i mi
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“So what?” you may say, “I've got my own troubles.” Here’s what:

Remember Eq. 18.27 Now we may write

1 o 1 .
V= VTt avmﬂmq ° aﬂme "

That is, the expression for the covariant divergence is charmingly simple.

The divergence theorem
Under coordinate transformations, the volume element changes like

a8x0
dX ® d det@ﬂ?;

X0, . .
where det %_gsthe Jacobian of the transformation.

But
SRR, (ol '
9m = Ok T&m ﬂin
so, using a well-known property of determinants of matrix-products,

det(AB) = det(A) det(B),

we find
2
g=9 & et gﬂ_;gjg
e e al
1.e.
Qdx = Qdx
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In other words, 8y d"X is the invariant volume element in a general space of n dimensions.

Now we can transform the volume integral of a divergence into an integral of a vector over a (normal)
hypersurface.

OlivvV @ dx = Qv™. &y d"x = Q' Ty VDo GiS,VTYy (18.13)

Proof of the theorem about determinants:
We want to prove that for some matrix G,
log [det(G)] = Tr [log(G)] .

Now this is obvious if the matrix is diagonalizable, with eigenvalues gy since then
N

eN U
log [det(G)] = log@ Oy ° é log(gy)

e: u =
g1 5 kil

and
N

Ti [log(G)] = & log(gy) -
k=1

We are concerned to prove the theorem more generally. First, it had better be true that the matrix
df

A = log(G)
exists (that is, it can be defined, the matrix has no zero eigenvalues, etc. etc.). Assuming this is the
case, let
df
G() = A G(l) = ¢ =G.

Now let us define

dlog [det(G(1))] = log[det(G(l +dI))] - log[det(G( )]

log[det(G +dG)] - log[det(G)]
=1og[detgs(1+e'1de)9 - log [det(G)]

= log[det(1 +G™'dG)] .

Now let us compute the last term:
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i1+@G'dG),  (G'dG),  (G'dG); %
GldG),, 1+(G'dG),,  (G'ldG),; ¥
(G'dG);,  (G'dG)y, 1+(G'dG)s; YA

1, A Vo Ya

det(1 + G 'dG)

~ 7 _ < _1 .
O &+G o)l + 0FG 'dG)’g
k

»1+@ @68, ° 1+ Tds 'dGy.
k

To this same order, then,

dlog [det(G(1))] = log§l + TrgG'ldG% = g’ 1olcsg

However, since G(I ) = €' A, clearly
dG(1) = Ad'Adl
and thus
dlog [det(G(1))] = T’ ldegz Trg@'AA ¢ Agou ° Tr(A)dl |,

giving, by direct integration,

log [det(G(1 )] = | Tr(A) + constant .

Since both sides must vanish when | =0, the constant is zero, giving at last (with | =1)
det(G) = exp[Tr(A)] = exp gTr(Iog(G))H .
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