Grad, Div, Curl, and all that...

Reading: Mathews \& Walker, Mathematical Methods of Physics, ch. 15.
S. Weinberg, Gravitation and Cosmology, ch. $3 \& 4$.

Ohanian and Ruffini, Gravitation and Spacetime, ch. 6 \& 7.
McConnell, Applications of Tensor Analysis, Ch. 12.

The generally covariant differential operators

The gradient operator is obvious, and we have already derived it. If $\varphi(x)$ is a scalar field, then

$$
\begin{equation*}
\varphi, \mu \stackrel{d f}{=} \frac{\partial \varphi}{\partial x^{\mu}} \tag{18.1}
\end{equation*}
$$

in fact transforms as a covariant vector under general coordinate transformations.

Next, consider the covariant curl defined by

$$
\begin{align*}
\operatorname{curl}_{v} A_{\mu} & \stackrel{\text { df }}{=} A_{\mu ; v}-A_{v ; \mu}=A_{\mu, v}-A_{v, \mu}-\left[\left\{\begin{array}{c}
\lambda \\
\mu v
\end{array}\right\}-\left\{\begin{array}{c}
\lambda \\
v \mu
\end{array}\right\}\right] A_{\lambda} \\
& \equiv A_{\mu, v}-A_{v, \mu} . \tag{18.2}
\end{align*}
$$

Finally, the divergence should generalize the flat-space result div $V=V^{\mu}{ }_{, \mu}$:

$$
\operatorname{div} V \stackrel{\mathrm{df}}{=} V_{; \mu}^{\mu} \equiv V_{, \mu}^{\mu}+\left\{\begin{array}{c}
\mu \tag{18.2}\\
\mu \sigma
\end{array}\right\} V^{\sigma} .
$$

However,

$$
\left\{\begin{array}{c}
\mu \tag{18.3}\\
\mu \sigma
\end{array}\right\}=\frac{1}{2} g^{\mu \lambda}\left[g_{\mu \lambda, \sigma}+g_{\lambda \sigma, \mu}-g_{\mu \sigma, \lambda}\right] \equiv \frac{1}{2} g^{\mu \lambda} g_{\mu \lambda, \sigma}
$$

where we have used the antisymmetry in $\mu \lambda$ of the terms $g_{\lambda \sigma, \mu}-g_{\mu \sigma, \lambda}$ to drop them after contraction with $g^{\mu \lambda}$.

Now consider $g_{\mu v}$ as a matrix G, with $d G=g_{\mu v, \sigma} d x^{\sigma}$; then

$$
\left\{\begin{array}{c}
\mu \tag{18.4}\\
\mu \sigma
\end{array}\right\} d x^{\sigma}=\frac{1}{2} \operatorname{Trace}\left[G^{-1} d G\right] .
$$

Let us call $\operatorname{det}(G)=-g$ (this is a standard notation, with the - sign introduced to make g positive); then

$$
\begin{equation*}
-\mathrm{g}=\mathrm{e}^{\operatorname{Trace}[\log (\mathrm{G})]} \tag{18.5}
\end{equation*}
$$

G ravitation and C osmology

The divergence theorem
(Eq. 18.5 is far from obvious, useful, and worth remembering. The proof is given below. For now, just believe it!)

Thus

$$
\log (-g)=\operatorname{Tr}[\log (G)]
$$

and

$$
\operatorname{Tr}[\log (G+d G)]=\operatorname{Tr}[\log (G)]+\operatorname{Tr}\left[\log \left(1+G^{-1} d G\right)\right],
$$

hence

$$
\log (-g-d g)=\log (-g)+\operatorname{Tr}\left[G^{-1} d G\right]
$$

so that

$$
\left\{\begin{array}{c}
\mu \\
\mu \sigma
\end{array}\right\} d x^{\sigma}=\frac{1}{2} d[\log (-g)] \equiv d[\log (\sqrt{-g})]
$$

or (we can now drop the - sign from $\sqrt{-g}$)

$$
\left\{\begin{array}{c}
\mu \tag{18.6}\\
\mu \sigma
\end{array}\right\}=\partial_{\sigma} \log (\sqrt{g})=\frac{1}{\sqrt{g}} \partial_{\sigma} \sqrt{g} .
$$

"So what?" you may say, "I've got my own troubles." Here's what:
Remember Eq. 18.2? Now we may write

$$
\begin{equation*}
V_{; \mu}^{\mu}=V_{, \mu}^{\mu}+\frac{1}{\sqrt{g}} V^{\mu} \partial_{\mu} \sqrt{g} \equiv \frac{1}{\sqrt{g}} \partial_{\mu}\left(V^{\mu} \sqrt{g}\right) . \tag{18.7}
\end{equation*}
$$

That is, the expression for the covariant divergence is charmingly simple.

The divergence theorem

Under coordinate transformations, the volume element changes like

$$
\begin{equation*}
d^{n} x \rightarrow d^{n} \bar{x} \operatorname{det}\left(\frac{\partial x}{\partial \bar{x}}\right) \tag{18.8}
\end{equation*}
$$

where $\operatorname{det}\left(\frac{\partial x}{\partial \bar{x}}\right)$ isthe Jacobian of the transformation.
But

$$
\begin{equation*}
\bar{g}_{\mu \nu}=g_{\kappa \lambda} \frac{\partial x^{\kappa}}{\partial \bar{x}^{\mu}} \frac{\partial x^{\lambda}}{\partial \bar{x}^{\nu}} \tag{18.9}
\end{equation*}
$$

so, using a well-known property of determinants of matrix-products,

$$
\begin{equation*}
\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B), \tag{18.10}
\end{equation*}
$$

we find

$$
\begin{equation*}
\bar{g}=g\left[\operatorname{det}\left(\frac{\partial x}{\partial \bar{x}}\right)\right]^{2} \tag{18.11}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
\sqrt{g} d^{n} x=\sqrt{g} d^{n} \bar{x} . \tag{18.12}
\end{equation*}
$$

G ravitation and C osmology

Lecture 18: Grad, Div, Curl, and all that...

In other words, $\sqrt{g} d^{n} x$ is the invariant volume element in a general space of n dimensions.

Now we can transform the volume integral of a divergence into an integral of a vector over a (normal) hypersurface.

$$
\begin{equation*}
\int \operatorname{div} V \sqrt{g} d^{n} x=\int V^{\mu} ; \mu \sqrt{g} d^{n} x=\int d^{n} x \partial_{\mu}\left(\sqrt{g} V^{\mu}\right) \equiv \int d S_{\mu} V^{\mu} \sqrt{g} . \tag{18.13}
\end{equation*}
$$

Proof of the theorem about determinants:

We want to prove that for some matrix G,

$$
\log [\operatorname{det}(G)]=\operatorname{Tr}[\log (G)]
$$

Now this is obvious if the matrix is diagonalizable, with eigenvalues g_{k} since then

$$
\log [\operatorname{det}(G)]=\log \left[\prod_{k=1}^{N} g_{k}\right] \equiv \sum_{k=1}^{N} \log \left(g_{k}\right)
$$

and

$$
\operatorname{Tr}[\log (G)]=\sum_{k=1}^{N} \log \left(g_{k}\right)
$$

We are concerned to prove the theorem more generally. First, it had better be true that the matrix

$$
A=\log (G)
$$

exists (that is, it can be defined, the matrix has no zero eigenvalues, etc. etc.). Assuming this is the case, let

$$
G(\lambda) \stackrel{d f}{=} e^{\lambda A}, \quad G(1)=e^{A}=G .
$$

Now let us define

$$
\begin{aligned}
d \log [\operatorname{det}(G(\lambda))] & =\log [\operatorname{det}(G(\lambda+d \lambda))]-\log [\operatorname{det}(G(\lambda))] \\
& =\log [\operatorname{det}(G+d G)]-\log [\operatorname{det}(G)] \\
& =\log \left[\operatorname{det}\left(G\left(1+G^{-1} d G\right)\right)\right]-\log [\operatorname{det}(G)] \\
& =\log \left[\operatorname{det}\left(1+G^{-1} d G\right)\right] .
\end{aligned}
$$

Now let us compute the last term:

G ravitation and C osmology

Proof of the theorem about determinants:

$$
\begin{aligned}
\operatorname{det}\left(1+\mathrm{G}^{-1} \mathrm{dG}\right) & =\left|\begin{array}{rrrr}
1+\left(\mathrm{G}^{-1} \mathrm{dG}\right)_{11} & \left(\mathrm{G}^{-1} \mathrm{dG}\right)_{12} & \left(\mathrm{G}^{-1} \mathrm{dG}\right)_{13} & \cdots \\
\left(\mathrm{G}^{-1} \mathrm{dG}\right)_{21} & 1+\left(\mathrm{G}^{-1} \mathrm{dG}\right)_{22} & \left(\mathrm{G}^{-1} \mathrm{dG}\right)_{23} & \cdots \\
\left(\mathrm{G}^{-1} \mathrm{dG}\right)_{31} & \left(\mathrm{G}^{-1} \mathrm{dG}\right)_{32} & 1+\left(\mathrm{G}^{-1} \mathrm{dG}\right)_{33} & \cdots \\
\cdots & \ldots & \cdots & \cdots
\end{array}\right| \\
& =\prod_{\mathrm{k}}\left[1+\left(\mathrm{G}^{-1} \mathrm{dG}\right)_{\mathrm{kk}}\right]+0\left(\left(\mathrm{G}^{-1} \mathrm{dG}\right)^{2}\right) \\
& \approx 1+\sum_{\mathrm{k}}\left(\mathrm{G}^{-1} \mathrm{dG}\right)_{\mathrm{kk}} \equiv 1+\mathrm{Tr}\left(\mathrm{G}^{-1} \mathrm{dG}\right) .
\end{aligned}
$$

To this same order, then,

$$
d \log [\operatorname{det}(G(\lambda))]=\log \left[1+\operatorname{Tr}\left(G^{-1} d G\right)\right]=\operatorname{Tr}\left(G^{-1} d G\right)
$$

However, since $G(\lambda)=e^{\lambda A}$, clearly

$$
d G(\lambda)=A e^{\lambda A} d \lambda
$$

and thus
$d \log [\operatorname{det}(G(\lambda))]=\operatorname{Tr}\left(G^{-1} d G\right)=\operatorname{Tr}\left(e^{-\lambda A} A e^{\lambda A}\right) d \lambda \equiv \operatorname{Tr}(A) d \lambda$,
giving, by direct integration,
$\log [\operatorname{det}(G(\lambda))]=\lambda \operatorname{Tr}(A)+$ constant.

Since both sides must vanish when $\boldsymbol{\lambda}=0$, the constant is zero, giving at last (with $\boldsymbol{\lambda}=1$) $\operatorname{det}(G)=\exp [\operatorname{Tr}(A)]=\exp [\operatorname{Tr}(\log (G))]$.

