
The curvature tensor

Covariant derivative of contravariant vector 
The covariant derivative of a (contravariant) vector is 

Vµ
 ; ν  =  ∂ν Vµ  +  



µ
νσ




 Vσ . (19.1) 

We used this in Eq. 18.2 without explaining it. Where does it come from? We know that the derivative
of a scalar is a covariant vector, 

ϕ , µ  =
df

   ∂µ ϕ .

Now, suppose the scalar is the contraction of 2 vectors: 
ϕ  =  Aµ Bµ (19.2) 

then by definition (and the product rule)
∂ν ϕ  =  Aµ , ν Bµ   +   Aµ Bµ

 , ν  ≡  Aµ ; ν Bµ   +   Aµ Bµ
 ; ν

=  

Aµ ; ν  +  



σ
νµ




 Aσ




 Bµ  +  Aµ Bµ

 , ν (19.3) 

From Eq. 19.3 we have 

Aµ ; ν Bµ   +   Aµ Bµ
 ; ν   =  Aµ ; ν Bµ  +  



σ
νµ




 Aσ Bµ  +  Aµ Bµ

 , ν

or

Aµ Bµ
 ; ν   =  Aµ Bµ

 , ν  +  


σ
νµ




 Aσ Bµ  =  Aµ 


Bµ

 , ν  +  


µ
νσ




 Bσ




(19.4) 

and since Aµ is arbitrary, we may say

Bµ
 ; ν  =  Bµ

 , ν  +  


µ
νσ




 Bσ . (19.5) 

Covariant derivative of tensor 
By similar manipulations, we can identify the covariant derivative of a contravarient second-rank
tensor----we write

ϕ  =  Aµ Bν T µν (19.6)

and use the product rule again to write 
∂κ ϕ  =  Aµ , κ Bν T µν   +   Aµ Bν , κ T µν   +   Aµ Bν T µν

 , κ

≡  Aµ ; κ Bν T µν   +   Aµ Bν ; κ T µν   +   Aµ Bν T µν
 ; κ (19.7)

to find
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T µν
 ; κ  =  T µν

 , κ   +   


µ
κσ




 T σν   +   



ν
κσ




 T µσ (19.8) 

and so forth.

Geodesic coordinates 

Suppose we locally change coordinates to a system x’µ  =  bµ
σ xσ, with (linear) transformation

coefficients bµ
σ chosen such that the new metric at that point is

g’µν  =
df

   gαβ bµ
α bν

β  =  ηµν . (19.9) 

Equations 19.9 constitute 10 inhomogeneous equations for 16 unknowns bµ
σ , whose determinant,

detgαβ
  =  

1
−g

 ,

is non-zero. Therefore they can always be solved, leaving 6 free parameters. These are in fact the 6
parameters of the Lorentz transformation (3 boost, 3 rotation) which, as we already know, leave the
Minkoski metric unchanged. 

Moreover, we can specify the coordinates further so that in the new system, all first derivatives of the

new metric, g’µν , κ vanish at the point aσ. The coordinates that do this are

x’µ  =  bµ
σ xσ   +   1

2
 Γµ

σκ xσ  −  aσ
 xκ  −  aκ

   +

+   1
3!

 Λµ
σκλ xσ  −  aσ

 xκ  −  aκ
 xλ  −  aλ

   + …

where the coefficients Γµ
σκ and Λµ

σκλ are manifestly symmetric in their lower indices, hence represent
20 and 80 independent parameters, respectively.

Problem:
An object with 3 indices that run from 0 to 3 obviously has 64 components. Show that if the object
is fully symmetric in the 3 indices, then there are but 20 independent components.

Hence show that Λµ
σκλ has 80 independent components.

Problem:

Find the relation between the coefficients Γµ
σκ and the Christoffel symbols 



µ
σκ




 (a) defined at the

point aσ in terms of the (derivatives of the) old metric gµν .

Since there are 20 first derivatives of the metric tensor, we can obviously choose the coefficients

Γµ
σκ to set the derivatives of the new metric tensor equal to zero at one point. Since then the
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Christoffel symbol vanishes, the motion of a test body in these new coordinates is unaccelerated, i.e.
freely falling.

What about the second derivatives of the metric tensor? There are 100 distinct components,
g’µν , κσ  ,

(two distinct pairs of symmetric indices, giving 10 × 10 = 100), but only 80 independent parameters
Λµ

σκλ , hence there will be 20 quantities involving second derivatives of the metric tensor, that cannot
be made to vanish at a point by a coordinate transformation.

In a frame where the first derivatives of the metric tensor can be chosen to vanish at a point, the
Christoffel symbols also vanish at that point, hence 

d2x’µ

d2τ
  =  0 . (19.10 ) 

The new coordinates at that point are freely falling, hence the name geodesic. 

We have spoken before of parallel transport, and concluded that when a vector Aµ is transported an
amount δxκ parallel to itself, the change in Aµ , arising from the change in the coordinates, is

δAµ  =  


σ
κµ




 Aσ δxκ . (19.11 ) 

We can think of the covariant derivative as the difference between the ordinary derivative and the
change that would occur if the vector were merely parallel-transported; hence the change in a
contravariant vector under parallel transport is

δAµ  =  −  


µ
κσ




 Aσ δxκ . (19.12 ) 

Finally, we note that the 4-velocity Uµ  =
df

   
dxµ

dτ
 is always parallel-transported; moreover, the contrac-

tion of the velocity and Aµ is a scalar that is invariant under parallel transport

δ Uµ Aµ

  =  


Uσ 



µ
σκ




 Aµ   −   Aµ 



µ
σκ




 Uσ



  δxκ  =  0 . (19.13)

To put it another way, the angle between a vector that is parallel-transported and the velocity is
always constant.
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The curvature tensor 

Let us parallel-transport a vector around an infinitesimal closed curve parameterized by xµ(p) : if
V
~

µ (0)  ≡  Vµ xκ(0) , we find

V
~

µ (p)   −   V
~

µ (0)  =  ∫  
0

 p
dp’ 

dV
~

µ (p’)
dp’

   =   ∫  
0

 p
dp’ 



σ
κµ




(p’) V

~
σ (p’) 

dxκ

dp’
 . (19.14 )

Let xµ (p = 0)   =   aµ ; we can then expand in Taylor’s series about p=0:

V
~

µ (p’)  ≈  Vµ (a)  +  


σ
κσ




(a) Vσ(a) xκ (p’)  −  aκ

 (19.15 ) 

and




σ
κσ




(x(p’))  ≈  



σ
κσ




(a)   +   xλ (p’)  −  aλ

  
∂

∂xλ 


σ
κσ




(a) . (19.16) 

Therefore

Thus, expanding in powers of
δxλ (p’)  =  xλ (p’)  −  aλ ,

we find 

V
~

µ (p)  −  Vµ (a)  ≈  


σ
νµ




(a) Vσ (a)  ∫  

0

 p
dp’ 

dxν

dp’
  + (19.18 )

+   






σ
νµ




(a) 



α
λσ




(a) Vα (a)  +  Vσ (a) ∂λ 



σ
νµ




(a)


  ∫  

0

 p
dp’ 

dxν

dp’
 δxλ(p’)  +  O (δxν δxλ)

We drop the O (δxν δxλ) term in Eq. 19.18 because we shall ultimately take the neighborhood of aλ

to be arbitrarily small.

Now, since the parameterization describes a closed curve, we have 

Thus we have to evaluate 

 

( )
0

p dx
dp dx p

dp

ν
ν′ ′=

′∫ ∫Ñ (19.19 ) 

( ) ( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( )

0

p
V p V a dp a x p a a

V a x p a a V a

λ λ
µ µ λ

κ κ
σ κ α

 σ σ   ′ ′ ′− ≈ + − ∂    µν µν    
 α ′+ − ∂   κσ  

∫% % i

(19.17)
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We see immediately that, because d(xνxλ)  =  xλdxν  +  xνdxλ is a perfect derivative, 

Thus we have an expression of the form 

where equation 19.22 defines the Riemann curvature tensor: 

Rµνλ
σ   =  ∂λ 



σ
νµ




  −  ∂ν 



σ
λµ




   +   



α
νµ




 


σ
λα




  −  



α
λµ




 


σ
να





(19.23) 

Clearly, Rµνλ
σ   =  0 if the space is flat, i.e. if the first and second derivatives of the metric tensor vanish,

since then the Christoffel symbols and their first derivatives vanish. 

Does this mean that in a freely falling system the curvature tensor is zero? No, because while the
Christoffel symbols vanish, their (ordinary) derivatives will not. Thus we can, in principle, distinguish
between a flat space and a freely falling system in a curved space, by the non-vanishing of the curvature
in the latter case.

We note that Rµνλ
σ  is a tensor by construction, since everything else in Eq. 19.22 is a tensor. We also

note that it is antisymmetric in λν. If one lowers the top index to produce the 4th rank covariant
tensor

Rκµ νλ  =  gκσ Rµνλ
σ  ,

we find the latter satisfies four identities:
Rκσ  µν  ≡  −Rσκ  µν

Rκσ  µν  ≡  −Rκσ  νµ

Rκσ  µν  ≡  Rµν  κσ

Rκσ  µν  +  Rκµ  νσ  +  Rκν  σµ  ≡  0  .

By virtue of these it is possible to show that only 20 of the components of the tensor Rµνλ
σ  are

independent (see Ohanian and Ruffini, p. 334ff), hence they may be identified with the 20 non-trivial

components of the second derivative of the metric tensor. In fact, up to a constant multiplier Rµνλ
σ  is

unique.

(19.20) ( ) ( )( ) ( ) ( )dx p x p a dx p x pν λ λ ν λ′ ′ ′ ′− ≡∫ ∫Ñ Ñ

(19.21) dx x dx xν λ λ ν= −∫ ∫Ñ Ñ

(19.22) ( ) ( )1
2

V R a V a dx xσ ν λ
µ µνλ σδ = ∫% Ñ
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