Gravitation and Cosmology
Lecture 20: The Einstein equations

The Einstein equations

Properties of the curvature tensor
In §19 we defined the Riemann curvature tensor
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by considering the change of a vector that is parallel-transported around a closed curve. We can also
consider the second covariant derivative of a vector:
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Now consider A, .| = Ap,| . on eliminating terms symmetric in nl " we find
Am;n;l - Am;l in = R2nl Ay (20.2)

What are the properties of Rgm ? First, it is a tensor. If the previous derivation (in §19) was

unconvincing, Eq. 20.2 should fix that: the left hand side is clearly a tensor (the difference of two
tensors at a point is a tensor), so the right hand side is also a tensor. But A, is an arbitrary vector

field, hence Rgm is a tensor.

Next, let us bring down the contravariant index with gy, :
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which, as we easily see, has the (anti)symmetry property:

Rabm = - Rabnm: (20.3)
[t is possible---but not easy!--to see that

Rab m = - Rba m (20.4)
and that

Rabm = Rmab - (20.5)

t  Yabearing in mind that ordinary partial derivatives commute.
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Some definitions:

A final symmetry with regard to index permutations is
Rab m t Ram b Ran bm ° 0. (20'6)

We note that the symmetry 20.6 really constitutes only one relation for the curvature tensor, since
unless the indices are all different, it reduces to 20.3, 20.4 or 20.5. This leads to the previously noted
fact that only 20 components of the curvature tensor are independent. We can see this by realizing
that, because there are only 6 possible pairs of indices ab or M, the curvature tensor is by virtue of
20.5like a6~ 6 symmetric matrix, which has 21 independent components. However, the additional
relation 20.6 reduces the number of components from 21 to 20.

Finally, we also have the Bianchi identity:
R + Rab ns;m + Rab sm;n =0 ’ (20~7)

which is far from easy to prove. The easiest method is the trick in Ohanian and Ruffini, of working

abm;s

in a geodesic coordinate system. Then the Christoffel symbols vanish and all covariant derivatives
reduce to ordinary partial derivatives which commute. But since the identity is true in one coordinate
system it must (via general covariance) be tru in all.

Some definitions:
The Ricci tensor is defined as the contraction of one of the first pair of indices with one of the second
pair:
df
Rbn =9
the curvature scalar is:
df
— 4bn bn ;am
R=9 Rbnog g Rabrm

am
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The antisymmetry relations 20.3-20.6, plus the Bianchi identity 20.7 give the second Bianchi identity

. ) R
8?”“- EgrmRH =0. (20.8)
e Us

Gravitation

As we have seen, the Einstein theory of gravitation has the form
F™=-8pGT™ (20.9)

where T™ is the energy-momentum tensor of matter, and F ™ is constructed from gravitational fields
h™ . We obtained the equation in Minkowski space by insisting on two criteria, namely that the field
equations contain up to second derivatives, that it respect energy-momentum conservation, and that
it obey the principle of equivalence. The form of our equations, together with thought experiments
in accelerated frames, has led us to equate gravitation with geometry. Thus, we should conjecture

that the field equations must have the generally covariant form
R™ - 2g™R + L g™ = -8pG T™ (20.10)

where L is an (unknown) constant, possibly zero, called the cosmological constant.
Loose ends
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In adding in a term L g™ involving the cosmological constant L, we assumed that
m —
g ;S T 0.

In fact, it is easier to show that

grm;s = O :
we have
- _ibg, - ibi
9m;s = 9m,s %ns Inb %msggbn
°® 9m.s - [ms,n] - [ns,nj (20.11)

1 . A
grm,s - Egsn,m"' grm,s - gms,n + gnm,s + gsm,n - gsn,n’d_ 0.

We also note that since g™ g, = d™,

@nkgkngs = gnk;s gkn + gnk gkn;s = g_jml] =0 (ZO~12)
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and since gy,,s = 0, then gm(;S = 0. QED.

Cosmological constant
We noted that the Einstein equations could in principle contain a cosmological term L g™ It is easy
to see that in the absence of matter, since goy » 1 + 2F (F is the dimensionless Newtonian
potential) the equations look something like

R2E = -L. (20.13)

The solution of this--finite at the origin-—-is F » - % Lr? . How can we tell, experimentally, whether

such a term is present or not! Consider a circular orbit about the Sun. The balance between
centrifugal and gravitational force gives
GM
wh= ==+ il (20.14)
r 3
Thus, by plotting the square of angular velocity vs. the inverse-cube of orbital radius for all the planets,
we can determine whether there is a non-zero intercept.

Suppose we do this with the planets Venus-Neptune (low eccentricities!):
Orbital Data for the Solar System

Planet Period (yr) Orbital mean radius (10° km)
Venus 0.61521 108.2
Earth 1.00004 149.54
Mars 1.88089 225.95
Jupiter 11.86223 776.5
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Orbital Data for the Solar System

Planet Period (yr) Orbital mean radius (10° km)
Saturn 29.45772 1423
Uranus 84.013 2863
Neptune 164.79 4498
The equation
T?=a+bR’ (20.15)
used to fit the above data yields least-squares best-fit parameters
= -1.3655" 107

b = 3.3478" 10°

Problem:
Is the value of b reasonable? What are its units?

We conclude from the intercept a above that
IL| £ 1.6 10 ©sec?.
From the behavior of galaxies and clusters we can---similarly---set a bound
IL| £ 1.6 1077 sec’ .
Is this large or small? If we take the density of mass-energy in the universe to be the Einstein critical
density 107 2 gm/cm3 , we have
8pGr i » 1.77 107 sec™?
which is 2 orders of magnitude smaller than the best astronomical bound on L . That is, a cosmological

constant this large would absolutely dominate cosmology, and the matter would have nothing to do
with anything.

Further reading:
S. Weinberg, “The cosmological constant problem”, Rev. Mod. Phys. 61 (1989) 1.

The Schwarzschild solution
We are now going to seek solutions of the Einstein equations (sans cosmological term)

R™ - 2g™R = -8pG T™ (20.16)

By the way, we never mentioned how we got the overall constant in front of T™: this came from
demanding that Eq. 20.16 reduce to the Newtonian gravitational potential in the weak-field limit,
with the identification

0o » 1 + 2F . (20.17)

94



Gravitation and Cosmology
Lecture 20: The Einstein equations

Now the object is to seek a solution that is spherically symmetric and time-independent (physical
insight tells us this should be the case), in which the metric takes the form
df
2
(dt)” = gy dx"dx"

.2 2
= B ()’ - AM) ()’ - P §dg) + sin'q(d) . (20.18)
That is,
gy = B(r)
9r = A(r)
T (20.19)
gg = 1
g; = r'sin’q

with the off-diagonal elements zero.

The determinant of the metric tensor is then (we shall need Qy in volume elements)
g = - derzgnd = A(N B(T) r*sin’q . (20.20)
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