
The Einstein equations

Properties of the curvature tensor
In §19 we defined the Riemann curvature tensor 
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by considering the change of a vector that is parallel-transported around a closed curve.  We can also
consider the second covariant derivative of a vector:
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Now consider Aµ ; ν ; λ  −  Aµ ; λ ; ν : on eliminating terms symmetric in νλ† we find

Aµ ; ν ; λ  −  Aµ ; λ ; ν  =  Rµνλ
β  Aβ . (20.2) 

What are the properties of Rµνλ
β  ? First, it is a tensor. If the previous derivation (in §19) was

unconvincing, Eq. 20.2 should fix that: the left hand side is clearly a tensor (the difference of two
tensors at a point is a tensor), so the right hand side is also a tensor.  But Aβ is an arbitrary vector
field, hence Rµνλ

β  is a tensor. 

Next, let us bring down the contravariant index with gαβ : 

Rαβ µν  =  gαλ Rβµν
λ

=  [βν , α]
 , µ

  −  [βµ , α]
 , ν

  +  [βν , λ] gασ gσλ
 , µ  +

+  [βν , λ] gασ gσλ
 , µ  −  [βµ , λ] gασ gσλ

 , ν  +

+  

 [βν , σ] [ρµ , α]  −  [βµ , σ] [ρν , α] 


 gρσ

which, as we easily see, has the (anti)symmetry property:
Rαβ µν  =  − Rαβ νµ . (20.3)

It is possible----but not easy!----to see that
Rαβ µν  =  − Rβα µν (20.4)

and that
Rαβ µν  =  Rµν αβ . (20.5)
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† …bearing in mind that ordinary partial derivatives commute.



A final symmetry with regard to index permutations is
 Rαβ  µν  +  Rαµ  νβ  +  Rαν  βµ  ≡  0 . (20.6)

We note that the symmetry 20.6 really constitutes only one relation for the curvature tensor, since
unless the indices are all different, it reduces to 20.3, 20.4 or 20.5. This leads to the previously noted
fact that only 20 components of the curvature tensor are independent. We can see this by realizing
that, because there are only 6 possible pairs of indices αβ or µν, the curvature tensor is by virtue of
20.5 like a 6 × 6 symmetric matrix, which has 21 independent components. However, the additional
relation 20.6 reduces the number of components from 21 to 20. 

Finally, we also have the Bianchi identity:
Rαβ µν ; σ  +  Rαβ νσ ; µ  +  Rαβ σµ ; ν  =  0 , (20.7)

which is far from easy to prove. The easiest method is the trick in Ohanian and Ruffini, of working
in a geodesic coordinate system. Then the Christoffel symbols vanish and all covariant derivatives
reduce to ordinary partial derivatives which commute. But since the identity is true in one coordinate
system it must (via general covariance) be tru in all.

Some definitions: 
The Ricci tensor is defined as the contraction of one of the first pair of indices with one of the second
pair:

Rβν  =
df

   gαµ Rαβµν ;

the curvature scalar is:

R  =
df

   gβν Rβν  ≡  gβν gαµ Rαβµν

The antisymmetry relations 20.3-20.6, plus the Bianchi identity 20.7 give the second Bianchi identity
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Gravitation 
As we have seen, the Einstein theory of gravitation has the form

Φµν  =  −8πG Tµν (20.9)

where Tµν is the energy-momentum tensor of matter, and Φµν is constructed from gravitational fields

hµν . We obtained the equation in Minkowski space by insisting on two criteria, namely that the field
equations contain up to second derivatives, that it respect energy-momentum conservation, and that
it obey the principle of equivalence. The form of our equations, together with thought experiments
in accelerated frames, has led us to equate gravitation with geometry. Thus, we should conjecture
that the field equations must have the generally covariant form

Rµν  −  1
2
 gµν R  +  Λ gµν  =  −8πG Tµν (20.10 )

where Λ is an (unknown) constant, possibly zero, called the cosmological constant.
Loose ends

Gravitation and Cosmology
Some definitions: 

92



In adding in a term Λ gµν involving the cosmological constant Λ, we assumed that
gµν

 ; σ  =  0 .

In fact, it is easier to show that
gµν ; σ  =  0  : 

we have
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and since gκν ; σ  =  0 ,  then gµκ
 ; σ  =  0 .  QED.

Cosmological constant 

We noted that the Einstein equations could in principle contain a cosmological term Λ gµν. It is easy
to see that in the absence of matter, since g00  ≈  1  +  2Φ (Φ is the dimensionless Newtonian
potential) the equations look something like

∇2 Φ  =  −Λ . (20.13) 

The solution of this----finite at the origin----is Φ  ≈  − 1
6
 Λr2 . How can we tell, experimentally, whether

such a term is present or not? Consider a circular orbit about the Sun. The balance between
centrifugal and gravitational force gives

ω2  =  
GM
r3   +  1

3
 Λ . (20.14) 

Thus, by plotting the square of angular velocity vs. the inverse-cube of orbital radius for all the planets,
we can determine whether there is a non-zero intercept.

Suppose we do this with the planets Venus-Neptune (low eccentricities!): 
Orbital Data for the Solar System

Planet Period (yr) Orbital mean radius (106 km)

Venus 0.61521 108.2
Earth 1.00004 149.54
Mars 1.88089 225.95

Jupiter 11.86223 776.5
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Orbital Data for the Solar System

Planet Period (yr) Orbital mean radius (106 km)

Saturn 29.45772 1423
Uranus 84.013 2863
Neptune 164.79 4498

                                                                  

The equation 

T −2  =  a  +  bR−3 (20.15)

used to fit the above data yields least-squares best-fit parameters

a  =  −1.3655 × 10−3

b  =  3.3478 × 106
   

Problem:
Is the value of b reasonable?  What are its units?

We conclude from the intercept a above that
|Λ|  ≤  1.6×10−16 sec−2. 

From the behavior of galaxies and clusters we can----similarly----set a bound 
|Λ|  ≤  1.6×10−33 sec−2.

Is this large or small? If we take the density of mass-energy in the universe to be the Einstein critical
density 10−29 gm/cm3 , we have 

8πGρcrit  ≈  1.7×10−35 sec−2

which is 2 orders of magnitude smaller than the best astronomical bound on Λ. That is, a cosmological
constant this large would absolutely dominate cosmology, and the matter would have nothing to do
with anything.

Further reading:
S. Weinberg, ‘‘The cosmological constant problem’’, Rev. Mod. Phys. 61 (1989) 1.

The Schwarzschild solution 
We are now going to seek solutions of the Einstein equations (sans cosmological term) 

Rµν  −  1
2
 gµν R  =  −8πG Tµν (20.16) 

By the way, we never mentioned how we got the overall constant in front of Tµν:  this came from
demanding that Eq. 20.16 reduce to the Newtonian gravitational potential in the weak-field limit,
with the identification 

g00  ≈  1  +  2Φ . (20.17) 
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Now the object is to seek a solution that is spherically symmetric and time-independent (physical
insight tells us this should be the case), in which the metric takes the form 

(dτ)
2
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   gµν dxµ dxν

=  B(r) (dt)
2
  −  A(r) (dr)

2
  −  r2 (dθ)
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2


 . (20.18) 

That is, 
gtt  =  B(r)
grr  =  A(r)

gθθ  =  r2

gϕϕ  =  r2 sin2θ

(20.19)

with the off-diagonal elements zero.

The determinant of the metric tensor is then (we shall need √g  in volume elements)
g  =  − det


gµν


  =  A(r) B(r) r4 sin2θ . (20.20)
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