
The Schwarzschild solution, cont’d

We continue to seek solutions of the Einstein equations

Rµν  −  1
2
 gµν R  =  −8πGT µν (21.1) 

where the source is an isolated point mass, M. 

The metric is given by

(dτ)
2
  =  B(r) (dt)

2
  −  A(r)  (dr)

2
  −  r2 (dθ)

2
  −  r2 sin2θ (dϕ)

2
(22.1) 

hence
g  =  − det


gµν


  =  A(r) B(r)  r4 sin2θ . (22.2) 

We need to express

Rµν  =  ∂ν 


λ
µ λ




  −  ∂λ 



λ
µ ν




  +  



σ
µ λ




 


λ
σ ν




  −  



σ
µ ν




 


λ
σ λ




 (22.3) 

in terms of A(r), B(r), r and θ. Recall that




λ
µ λ




  =  1

2
 ∂µ ln(g) ; (22.4) 

the other derivative term is more easily worked out by components:

∂λ 


λ
µ ν




  =  ∂t 





t
µ ν




  +  ∂r 





r
µ ν




  +  ∂θ 



θ
µ ν




  +  ∂ϕ 



ϕ
µ ν




 ; (22.5) 

since everything is time- and ϕ-independent, the first and  fourth terms of Eq. 22.5 vanish. Of the

10 terms 


θ
µ ν




 , only two are non-zero, and only one of these depends on θ: 





θ
ϕ ϕ




  =  −sinθ cosθ . 

All four non-vanishing terms in 




r
µ ν




 are diagonal in µν. 

Since g is the product of four factors,  1
2
 ln(g) is the sum of four terms, each depending on either r or

θ, but not both. Hence only diagonal elements, rr and θθ can emerge from it.

Next we look at 


σ
µ λ




 


λ
σ ν




 ; if σ is t, we get diagonal rr and tt elements. If σ is θ, we get rr and θθ

elements. If σ is v, we find rr and ϕϕ elements. 

Considering now 


σ
µ ν




 


λ
σ λ




  =  1

2
 


σ
µ ν




 ∂σ ln(g) we see that σ can only be r or θ.  This permits tt,

rr, θθ and ϕϕ terms. It also permits an rθ term, but this is cancelled off. 

I leave the remainder of the algebraic procedure to the diligent student. It is one of those things worth
working out once in one’s life, but the pleasure dims with repetition. The results are 
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Rtt  =  
−B’’
2A

   +   
B’
4A

 




B’
B

  +  
A’
A




   −   

1
r
 
B’
A

(21.11t)

Rrr  =  
−B’’
2B

   +   
B’
4B

 




B’
B

  +  
A’
A




   +   

1
r
 
A’
A

(21.11r)

Rθθ  =  −1   +   
r

2A
 




B’
B

  −  
A’
A




   +   

1
A

(21.11θ)

Rϕϕ  =  sin2θ  Rθθ (21.11ϕ)

Now, do we have to evaluate R, the curvature scalar? No, because if we contract Eq. 21.1 we find

R  −  1
2
 × 4 R  =  −8πGT (22.6)

or
R  =  4πGT. 

Thus,

Rµν  =  −8πG 

T µν  −  1

2
 gµν T



 . (22.7) 

Now, outside a point source, Rµν  =  0 . We also impose the boundary condition that the metric
becomes Minkowskian as r  →  ∞ .  Thus, 

lim
r → ∞

  A(r)  =  lim
r → ∞

  B(r)  =  1 . (22.8) 

We turn now to actually solving Eq. 21.11. We eliminate the B’’(r) between Rtt  and Rrr :
Rtt

B
  −  

Rrr

A
  =  

−1
rA

 




A’
A

  +  
B’
B




  =  0 (22.9) 

hence 
lnA  +  lnB  =  const.

or
A(r) B(r)  =  1 . (22.10 ) 

(We get Eq. 22.10 by imposing the boundary condition at ∞ .) 

Thus we can write 
Rθθ  =  −1   +   rB’   +   B  =  0 (22.11 ) 

Rrr  =  
−B’’
2B

   −   
1
r
 
B’
B

  =  0 . (22.12 )

Since, from Eq. 22.11, 
[r B(r)] ’  =  1 , (22.13 ) 

rB(r)  =  r  +  const.
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We know already from the weak field approximation that for large r, gtt  =  1  +  2 Φ(r), hence by
matching we find that

B(r)  =
df

   gtt(r)  =  1   −   
2MG

r
(22.14) 

and from Eq. 22.10,

A(r)  =
df

   −grr(r)  =  

1  −  

2MG
r





−1

(22.15)

Eq. 22.14-15 are known as the Schwarzschild solution, or the Schwarzschild metric.

Keppler problem in General Relativity
We have just seen that the Schwarzschild metric of a (non-rotating) point mass is 

(dτ)
2
  =  


1  −  

2MG
r




 (dt)

2
  −  


1  −  

2MG
r





−1

 (dr)
2
  −

−  r2 (dθ)
2
  −  r2 sin2θ (dϕ)

2
  . (22.16)

There are several ways to find the equation of motion of a test body in the gravitational field of a
large mass. The simplest is the geodesic equation, 

d2 xµ

dτ2    +   


µ
κ λ




 
dxκ

dτ
 
dxλ

dτ
  =  0 , (22.217 

but we could also use Hamilton’s principle directly: 

δ ∫ dτ  =  δ ∫ dp Λ  ≡  δ ∫ dp 



gµν 

dxµ

dp
 
dxν

dp




1⁄2

  =  0 . (22.18) 

Applied to test motion in a Schwarzschild metric, we have the Euler-Lagrange equations
d
dp

 

B(r) 

dt
dp

 
1
Λ




  =  0

d
dp

 



r2 sin2θ  

dϕ
dp

 
1
Λ




  =  0

d
dp

 



r2  

dθ
dp

 
1
Λ




  =  r2 





dϕ
dp





2

 
sinθ cosθ

Λ

−  
d
dp

 

A(r) 

dr
dp

 
1
Λ




  =  

dΛ
dr

(22.19)

Since Λ  =
df

   
dτ
dp

 , we have from Eq. 22.19

B(r) 
dt
dτ

  =  const. (22.20) 
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We choose const.  =  1 so that τ  →  t as space-time becomes flat. Next,

r2 sin2θ 
dϕ
dτ

  =  const.  =  
J
m

(22.21) 

leading to
d
dτ

 



r2 

dθ
dτ




  =  

J2 cosθ
m2 r2 sin3θ

(22.22) 

Equation 22.22 is a second-order differential equation, hence has two constants that can be chosen

at τ  =  0 . With θ(0)  =  
π
2

 and 




dθ
dτ



τ=0

  =  0 , Eq. 22.22 guarantees θ(τ)  =  
π
2

 for all subsequent

(proper) time. 

Now the equation of motion for r may be integrated once using the integrating factor 
dr
dτ

 ; the result

is

−  1
2
 A(r) 



dr
dτ





2

   +   1
2
 A(r)   −   1

2
 

J2

m2 r2  =  const. (22.23) 

We can now look at the small-field, small-velocity limit:

1
2
 


dr
dτ





2

   −   
GM

r
   +   1

2
 

J2

m2 r2   −   1
2
  =  

E
m

  −  1
2

(22.24) 

Eq. 22.24 is just the energy equation derived by integrating Newton’s Law once. This guides us to
write

− A(r) 


dr
dτ





2

   +   A(r)   −   
J2

m2 r2  =  1  −  
2E
m

 . (22.25)

Taking the square root and dividing by 
dϕ
dτ

 , we obtain the General Relativistic analogue of the

Newtonian orbital equation:

dr
dϕ

  =  ± 



1   −   


1  −  

2GM
r




 



1  −  

2E
m

  +  
J2

m2r2









 1⁄2

 
mr2

J
(22.26) 

For a bound orbit, we must have E < 0 .

Gravitation and Cosmology

104


