Gravitation and Cosmology
Lecture 22: The Schwarzschild solution, cont’d

The Schwarzschild solution, cont’d

We continue to seek solutions of the Einstein equations

R™ . %g”"R = -8pGT™ (21.1)
where the source is an isolated point mass, M.

The metric is given by

@)’ = B (@) - AP @)’ - *(dg) - rsing(dj)’ 22.1)
hence
g=- detéamg = A(r) B(r) r*sin’q. (22.2)

We need to express
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in terms of A(r), B(r), r and q. Recall that

ila_1

Imi g = 5 Tmln(@) ; (22.4)
the other derivative term is more easily worked out by components:
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since everything is time- and j -independent, the first and fourth terms of Eq. 22.5 vanish. Of the

iqu
10 terms { 97 , only two are non-zero, and only one of these depends on Q:
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All four non-vanishing terms in § m {\; are diagonal in M.
7

Since ¢ is the product of four factors, % In(g) is the sum of four terms, each depending on either r or
g, but not both. Hence only diagonal elements, rr and qg can emerge from it.

s U : ; if S is t, we get diagonal rr and tt elements. If S is q, we get rr and qq
TS

ml
elements. If s is V, we fmd rrandj j elements.
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Next we look at |

Considering now :' sutla_ S ﬂs In(g) we see that S can only be r or . This permits tt,
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rr,gqandjj terms. It also permits an rq term, but this is cancelled off.
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I leave the remainder of the algebraic procedure to the diligent student. It is one of those things worth
working out once in one’s life, but the pleasure dims with repetition. The results are
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Rj; = sin’d Ry (21.11))

Now, do we have to evaluate R, the curvature scalar? No, because if we contract Eq. 21.1 we find

R- 3" 4R =-8pGT (22.6)
or
R = 4pGT.
Thus,
R™ = -8pGgT”“ - 29" TO. (22.7)
a

Now, outside a point source, R™ = 0 . We also impose the boundary condition that the metric
becomes Minkowskian asr ® ¥ . Thus,

lim A(r) = lim B(r) = 1. (22.8)

r® ¥ r® ¥

We turn now to actually solving Eq. 21.11. We eliminate the B’(r) between R;; and R, :
Ry Ry _-lah B0

- = + =0 (22.9)
B A rA{A ~ B

hence
InA + InB = const.

or
ANBr) =1. (22.10)

(We get Eq. 22.10 by imposing the boundary condition at ¥ .)

Thus we can write

Rgg=-1+1mB" +B=0 (22.11)
_ _B” l B, _
Ry = B T B - 0. (22.12)
Since, fromEq.22.11,
[rBM] " =1, (22.13)

rB(r) = r + const.
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We know already from the weak field approximation that for large r, g; = 1 + 2 F(r), hence by

matching we find that

df IMG

B = 6N =1 - —— (22.14)
and from Eq. 22.10,
df o1
IMG
AN = -g,(n) = é‘f L, (22.15)
é g

Eq. 22.14-15 are known as the Schwarzschild solution, or the Schwarzschild metric.

Keppler problem in General Relativity
We have just seen that the Schwarzschild metric of a (non-rotating) point mass is

(dt)z=§- ZMGg(dt) i g(f ZMGo (d) i
e e
- g’ - Psinfq(d) (22.16)

There are several ways to find the equation of motion of a test body in the gravitational field of a

large mass. The simplest is the geodesic equation,

d x™ 3 migdx* dx

— + = .
dt2 'klgdt o o O (22.217

but we could also use Hamilton’s principle directly:
lg
\ _ \ ~, e dX anO _
doit =dQdpL © dQdp Qer o dp =0. (22.18)

Applied to test motion in a Schwarzschild metric, we have the Euler-Lagrange equations

iﬁ( dt 10
dp dpL

de o, d 10
dpg‘ sin“q d L 0
(22.19)
dag d_qloz 2 o 0 sing cosq
dpg PLy edpﬂ L
d dr 16 _ dL
T dp gi\(r) dp L~ dr
df dt
Since L = d—p,we have from Eq. 22.19
dt
B(r)a = const. (22.20)
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We choose const. = 1sothatt ® tasspace-time becomes flat. Next,

2.2 4 _J

r‘ sin“q ot const. - (22.21)
leading to

.. 2
dadgd _ ) cosq (22.22)

dt & dty mirsin’g
Equation 22.22 is a second-order differential equation, hence has two constants that can be chosen
att = 0. With q(0) = % and g—?: = 0, Eq. 22.22 guarantees q(t) = % for all subsequent
Tt=0

(proper) time.

. . , . . . dr
Now the equation of motion for r may be integrated once using the integrating factor — ; the result

dt
is
1 zaelrt')2 1 g
1
- AN = + AN - -—— = . 22.23
We can now look at the small-field, small-velocity limit:
.2 2
1 a8ro GM 1 1 _E 1
o+ - + = - == = (22.24)
2 gdt g r 2 m? 2 2 " m 2
Eq. 22.24 is just the energy equation derived by integrating Newton’s Law once. This guides us to
write
a6 ; 2E
CANEL LA - —— =1 - = (22.25)
( ) gdt o ( ) mz rz m

g
Taking the square root and dividing by i , we obtain the General Relativistic analogue of the

Newtonian orbital equation:

g
LA Mggl SEL TS (22.26)
dj é e " gé M mrg

For a bound orbit, we must have E <0 .
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