
Neutron stars and white dwarfs 

A neutron star or a white dwarf star is so hot that to first approximation we may regard all its atoms
as fully ionized.  (Of course, most of the matter in a neutron star is neutrons, which do not ionize.) 

The baryonic matter in a white dwarf is mainly 4He.  This provides the mass, while the electrons
provide charge neutrality and supply the pressure that keeps the star from collapsing under its own
weight. 

Assume Z electrons. Clearly, if N is the number of  4He nuclei, Z  =  2N. 

The mass of the star is then NmHe  ≈  4Nmproton  ≡  4Nm . 

The electrons are fermions, so in a box of volume Ω large enough to contain many electrons, but
small enough that the tidal effects of the gravitational field are small across its volume, the electrons
fill up all the available levels to the Fermi energy.  

An electron state in the box is labelled by momentum p→ and spin σ, which can be ‘‘up’’ or ‘‘down’’.
Hence the number of electron states with momenta between p→ and p→  +  dp→ is the Fermi distribution,

dZ  =  
2Ω d3p

h3   
1

e(ε(p) − εF) ⁄ kT  +  1
  . (24.1) 

The temperature kT is relatively low compared with the Fermi energy ε  ≈  0.13 MeV, so the Fermi
distribution becomes a θ-function.  That is, we have

Z  =  
2Ω

(2π h--)3  
4πpF

3

3
(24.2) 

leading to a local electron density

ne  =  
Z
Ω

  =  
pF

3

3π2 h--3  . (24.3) 

Thus the local average kinetic energy of the electrons is

〈ε〉  =  
1
Z

 ∫ dZ(p)  ε(p) (24.4) 

and the local (kinetic) energy density is the average kinetic energy of an electron times the number
density. For nonrelativistic electrons,

〈ε〉  =  3
5
 

pF
2

2me
(24.5)

whereas for ultra-relativistic ones,

〈ε〉  ≈  3
4
 pF c  . (24.6) 

We see that as the star gets denser, the electrons can become ultra-relativistic. 
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Problem: 
A white dwarf star has the solar mass and a radius  ≈  9000 Km . What is the average Fermi
momentum? 

Are the electrons relativistic or nonrelativistic?

What is the temperature corresponding to this Fermi momentum?

Thus the kinetic energy density for nonrelativistic electrons is

U(r)  =  ne 〈ε〉  =  3
5
 

pF
2

2me
  

pF
3

3π2 h--3 (24.7) 

where we imagine pF is a function of position, as the local density varies.

Since ne  =  
Z
Ω

  =  
2 ρ
4m

  =  
ρ

2m
 (ρ is the mass-density) we can re-express Eq. 24.7 as

U(r)  =  
3 h--2

10me
(3π2)

2⁄3
  




ρ
2m





5⁄3

 . (24.8) 

The total mass within a sphere of radius r is 

M(r)  =  4π ∫  dr’ r’2  ρ(r’)
0

r

and the gravitational acceleration at r is therefore 

a(r)  =  −  
M(r) G

r2  . (24.9) 

The pressure at r is obtained from the (isentropic) equation for work: 

d 


U
ρ




  +  p dΩ  =  

dU
ρ

  −  U 
dρ
ρ2   −  p 

dρ
ρ2   =  0 (24.10) 

or

p  =  ρ 
dU
dρ

  −  U  =  2
3
 U  =

df

   Γρ
5⁄3 . (24.11) 

The equation for static equilibrium states that the gravitational force on a small volume of area A
and height dr should equal the difference of the pressure between r and r + dr : 

1
r2 GM(r) ρ(r) A dr  =  A 


p(r)  −  p(r + dr)


(24.12) 

or 

GM(r) ρ(r)  =  −  r2 
dp
dr

4πG ∫  dx x2 ρ(x)
0

r
  =  −  5

3
 Γ r2 ρ

−1⁄3 
dρ
dr

(24.13) 

which can finally be simplified to Chandrasekhar’s equation 

Gravitation and Cosmology

114



4πG r2 ρ(r)  =  −  5
3
 Γ 

d
dr

 



r2 ρ

−1⁄3 
dρ
dr




 . (24.14) 

Equation 24.14 must be solved by numerical methods. Thus we shall try to get an approximate result.
Go back to Eq 24.7 and estimate the total kinetic and potential energy of the star:

KE  ≈  Z 3
5
 

pF
2

2me
  ≈  3

5
 




9π
4





2⁄3

 
Z

5⁄3

2me R
2 (24.15)

V  ≈  −  3
5
  

Mstar
2  G
Rstar

  =  −  3
5
  

(2ZM)2 G
R

(24.16)

We see that the total energy has the form

Etot  =  
a

R2  −  
b
R

(24.17)

which has a minimum when R  =  2a ⁄ b, whereupon 

Emin  =  
−b2

4a
(24.18) 

Ultra-relativistic electrons
What happens when the electrons get so dense they are relativistic? From Eq. 24.6 we see that Eq.
24.17 becomes 

Etot  =   
a’
R

  −  
b
R

(24.19)

which has no minimum if a’ <   b, and no maximum of the sign of the inequality is reversed. More
specifically,

KE  =  Z 
3
kF

3   ∫  
0

kF
 dk k2 ( √k2 + me

2   −  me)  ≈  3
4
 kF Z

V  ≈  −  3
5
  

4MN
2  Z2

R

(24.20)

where kF is now the average electron Fermi momentum of the star, given by

kF  =  




3π2 ⋅ 3Z
4π R3





1⁄3

  =  
1
R

  




9πZ
4





1⁄3

  .

Hence we have 

a’  =  3
4
 Z

4⁄3 




9π
4





1⁄3

b  =  3
5
 Z2 4M2 G  .

(24.21)

Since Z2 beats Z
4⁄3 as Z →  ∞, eventually a sufficiently massive white dwarf star will become unstable

against further collapse. That is, the pressure of the degenerate electron gas is not enough----when
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the electrons become relativistic----to support the star against its own weight. This takes place
(roughly) when Z  =  Zcrit , where 

Zcrit
2⁄3   ≈  5

4
 




9π
4





1⁄3

  
h--c

4M2 G
  . (24.22) 

Note that 


h-- c
G




  =  [M2]; this suggests we define the Planck mass 

MPlanck  =  


h-- c
G





1⁄2

(24.23)

In terms of MPlanck we find

Zcrit  =  


5
16





3⁄2

 




9π
4





1⁄2

 




MPl
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3

  . (24.24)

The stellar mass corresponding to this (approximate) Chandrasekhar limit is 

Mcrit  =  2MN Zcrit  ≈  0.464 × 2 × 
MPl

3

MN
2   =  3.16 × 1033 gm  =  1.6 M¤ (24.25)

When we perform the calculation more accurately, i.e. when we take into account the radial variation
of density and the corrections to the extreme relativistic kinematics of the electrons, we find instability
setting in at a lower value of Mstar , about 1.45 M¤ . 

Neutron stars
What happens when Mstar  >  Mcrit ? Clearly, the star collapses as it cools, the electrons become
ultra-relativistic, and the collapse continues until something else can halt it. 

Normally, a free neutron is unstable with respect to β-decay: 

n  →   p  +  e−  +  ν
__

e  +  0.8 MeV. 

If the neutron is surrounded by an electron gas, whose pressure increases to the point where the
maximum kinetic energy of the emitted electron (εe  ≈  0.8 MeV) is below the Fermi energy, the
neutron can no longer β-decay because there are no available states for the electron.  We call this
effect ‘‘Pauli blocking’’. 

Moreover, when the electron pressure is this large, the inverse β-decay reaction, 
p  +  e−  →   n  +  νe  −  0.8 MeV,

beomes possible. The inverse process takes place when
√me

2  +  kF
2    −   me  =  0.8 MeV (24.26) 

or kF  ≈  1.2 MeV/c.  Then with Z  =  Z¤  ≈  1057,
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ne  =  
kF

3

3π2  =  7.5×1030 /cm3  =  
3Z

4πR3 (24.27) 

which gives 
R  ≈  3×108 cm  =  3000 km . 

In other words, inverse β-decay becomes favorable at about the same time the white-dwarf star
becomes unstable for collapse. As the collapse proceeds, all the protons in the interior of the star
inverse β-decay to neutrons which cannot β-decay because there is an atmosphere of protons and
electrons, with enough electron density to Pauli-block the β-decay. 

In other words, a collapsed white dwarf turns into a Fermi gas consisting of N  ≈  2Z neutrons, with
total kinetic and potential energies

KE  =  













  3
5
 N 

nF
2

2MN
 ,  (nonrelativistic)

  3
4
 N nF ,  (relativistic)

(24.28a)

V  =  −  3
5
 
N2 MN

2  G
R

   +   VNuc (24.28b) 

where

nF  =  




9πN
4





1⁄3

 
1
R

  . 

The nuclear interaction energy VNuc becomes significant when the (number) density becomes
comparable to nuclear densities, nNuc  =  1.6×1038 /cm3 . Then 

nF  ≈  250 MeV/c , 

R  ≈  2×106 cm  =  20 Km . 

Role of General relativity

The dimensionless gravitational potential Φ is 
MG
Rc2  where M  =  M¤ . The Schwarzschild metric

involves 2Φ, which for white dwarf stars at the Chandrasekhar limit is 10-3; whereas for neutron stars
2Φ  ≈  0.15 . Hence general relativity is important for neutron stars, but not for white dwarves.
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