
General relativistic theory of stellar equilibrium

The gravitational equations
The Einstein equations for a distributed (fluid) source are, as before,

Rµν  =  −8πG 

Tµν   −   1

2
 gµν T




(25.1) 

where we take as the energy-momentum tensor of a relativistic fluid 
Tµν  =  −p gµν  +  


ρ + p


 Uµ Uν . (25.2) 

The 4-velocity Uµ satisfies 

gµν Uµ Uν  =  1 , (25.3) 

hence

T  =
df

   gµν Tµν  =  −4p  +  ρ  +  p  =  ρ  −  3p (25.4) 

and

Rµν  =  −8πG 


1
2
 gµν (p  −  ρ)   +   (p  +  ρ) Uµ Uν




 . (25.5) 

We assume a metric of Schwarzschild form
gtt  =  B(r) ,

gθθ  =  −r2 ,

       

grr  =  −A(r)

gϕϕ  =  −r2 sin2θ

take the fluid to be static, Ur  =  Uθ  =  Uϕ  =  0, and from Eq. 25.3, find

Ut  =  √ B(r)  . (25.6) 

Now we work out the components of the curvature tensor, as before:

Rtt  =  
−B’’
2A

   +   
B’
4A

 




B’
B

  +  
A’
A




   −   

1
r
 
B’
A

  =  −4πG (3p + ρ) B (25.7t)

Rrr  =  
−B’’
2B

   +   
B’
4B

 




B’
B

  +  
A’
A




   +   

1
r
 
A’
A

  =  4πG (ρ − p) A (25.7r)

Rθθ  =  −1   +   
r

2A
 




B’
B

  −  
A’
A




   +   

1
A

  =  −4πG (ρ − p) r2 (25.7θ)

Rϕϕ  =  sin2θ  Rθθ (25.7ϕ)

Eq. 25.7θ, ϕ are identical, and testify to the rotational invariance of the problem. 

We now want the equation of hydrostatic equilibrium. Recall from §24 that in the Newtonian case
we had to balance the force of gravitation against the pressure gradient, at a distance r from the origin:

Gravitation and Cosmology
Lecture 25: General relativistic theory of stellar equilibrium

119



−r2 
dp
dr

  =  G M(r) ρ(r) . (24.13) 

However, in the general-relativistic case there is no such thing as a ‘‘force of gravitation’’. Where,
then, does gravitation enter the condition of hydrostatic equilibrium? We see that it must come from
the covariant generalization of the conservation of energy. (We could also have derived Newtonian
hydrostatic equilibrium from an energy principle.) That is, 

Tµν
; ν  =  0 (25.8) 

or 

Tµν
, ν  +  



µ
σ ν




 T σν  +  



ν
σ ν




 T µσ  =  



µ
σ ν




 T σν  +  

1
√g

 ∂ν √g  T µν
  =  0 . (25.9) 

Since

−p gµν

 ; ν
  ≡  −gµν p, ν (25.10 ) 

and since only Ut  ≠  0 (also it is independent of time) we have 

−gµν p, ν   +   




µ
t t




 U t U t (p  +  ρ)  ≡  −gµν p, ν   +   





µ
t t




 

1
B(r)

 (p  +  ρ)  =  0 . (25.11 ) 

Now, since the only variation is with respect to r (by symmetry), all derivatives except with respect
to r vanish, leading to 





µ
t t




  =  −  1

2
 gµν B, ν  =  −  1

2
 grr B, r

thence to

−grr p, r  −  1
2
 grr B, r 

1
B

 (p + ρ)  =  0 ,

and finally to
dp
dr

  +  
B’
2B

 (p + ρ)  =  0 . (25.12 ) 

Now, to solve the equations for the metric tensor, take the linear combination 
Rtt

2B
  −  

Rrr

2A
  +  

Rθθ

r2   =  −  
1
r2  −  

A’

2rA2  +  
1

r2 A
  =  −8πGρ (25.13 ) 

or 
d
dr

 


r
A




  =  1  −  8πGρ(r) r2

i.e. 

A(r)  =  



1  −  

2GM(r)
r

 




−1

(25.14 ) 

where as before

M(r)  =  4π ∫  dx x2 ρ(x)
0

 r
 . (25.15 ) 
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We now use the equation Eq. 25.7θ together with Eq. 25.12 to relate the pressure gradient and density:

−1   +   
r

2A
 




B’
B

  −  
A’
A




   +   

1
A

  =  −4πG (ρ − p) r2 ;

insert A(r) from Eq. 25.14 to get
B’
2B

  =  AG 



4πp(r) r  +  

M(r)
r2





and 
B’
2B

 from Eq. 25.12 to find at last 

−r2 
dp
dr

  =  GM(r) ρ(r) 



1  +  

p(r)
ρ(r)




 



1  +  

4πr2 p(r)
M(r)




 



1  −  

2GM(r)
r





−1

(25.16) 

To proceed further we require an equation of state, namely a relation between p(r) and ρ(r). We
might, for example, model a neutron star as a (locally) non-interacting Fermi gas of neutrons, in
which case 

ρ(r)  =  
1
π2 ∫  dk k2 


k2  +  MN

2 


1⁄2

0

kF(r)
(25.17 a) 

p(r)  =  
1

3π2 ∫  dk k4 

k2  +  MN

2 


−1⁄2

0

kF(r)
(25.17 b) 

The relation between p(r) and ρ(r) is in principle established by solving, say, Eq. 25.17a for the local
Fermi momentum kF(r)----which can then be expressed in terms of ρ(r)----then inserting that
expression in Eq. 25.17b. 

It is found that under the pure Fermi gas assumption, a neutron star with mass ≈ M¤ and radius
≈ 10 Km is the largest possible. However, with these parameters the central density exceeds the
density of nuclei, hence the nuclear forces must play an important role. One may safely disregard the
limits in Weinberg’s book, since the theory of nuclear forces that led to it is now considered obsolete.
At present we do not know the maximum possible mass of a neutron star. 

What is it that determines Mmax ? It turns out that if the mass gets too large, then no equation of
state can produce enough pressure to sustain the weight. The reason for this is that the right hand
side of Eq. 25.16 is made larger by the pressure and by the effects of gravitational distortion of
space-time. It is fairly easy to see that if M is too large, as we integrate inward from some radius where
p=0, we will reach a singularity in p----that is, the pressure can become infinite----while r is still >0.
There is no equation of state that can supply infinite pressure at finite density, hence there is always
a maximum M. 
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