
Gravitational radiation

Reading: Ohanian and Ruffini, Gravitation and Spacetime, 2nd ed., Ch. 5.

Gravitational equations in empty space 
The linearized field equations are (in our units, not Ohanian’s)

∂λ ∂λ ϕµν  =  −16πG Tµν (28.1)

In vacuo, Tµν  =  0 , hence

∂λ ∂λ ϕµν  =  0 , (28.2)

with the gauge condition
∂µ ϕµν  =  0 . (28.3)

Clearly Eq. 28.3 has plane-wave solutions
ϕµν  =  εµν eik ⋅ x . (28.4)

As a consequence of Eq. 28.2, we have
kµ kµ  =  0 ; (28.5)

and of Eq. 28.3, that
kµ εµν  =  0 . (28.6)

The dispersion relation, Eq. 28.5, describes waves propagating at the speed of light, independent of
their frequency ω  ≡  k0.

The polarization tensor

Clearly, εµν is symmetric, hence has 10 components. The 4 conditions 28.6 mean only 6 of the
components are independent. But in fact, there are only 2 independent components.

Why is this? We can always make a change of coordinates

x
_

µ  ←  xµ  +  ζµ(x) (28.7)

in which case the metric changes from

gµν  =  ηµν  +  hµν (28.7)

to 

g
_

µν  =  ηµν  +  h
_

µν (28.8)

where

h
_

µν  =  hµν  −  ∂ν ζµ  −  ∂µ ζν . (28.9)

Exercise:
Derive Eq. 28.9.

Gravitation and Cosmology
Lecture 28: Gravitational radiation

131



With the change ov variable Eq. 28.7, we see that ϕµν  →  ϕ
__

µν where
ϕ
__

µν  =  ϕµν  −  ∂ν ζµ  −  ∂µ ζν  +  ηµν ∂λ ζλ . (28.10)

The new field function obeys the gauge condition ∂µ ϕ
__

µν  =  0 if and only if the coordinate transfor-
mations are solutions of

∂λ ∂λ ζµ  =  0 . (28.11)

Thus, for example, we could modify the solution 28.4 by adding

δ ϕµν  =  aµ kν  +  aν kµ  −  ηµν kλ aλ
 eik ⋅ x (28.12)

without changing any physical consequences. Since aµ is an arbitrary constant vector, there are four
(4) more conditions on εµν, leaving only 2 non-trivial components.

We see that the polarization tensor can be transformed by
ε
_

µν  =  εµν  +  aµ kν  +  aν kµ  −  ηµν kλ aλ , (28.13)

which automatically satisfies
kµ ε

_
µν  =  0 . (28.14)

Suppose we have two distinct normalized vectors Aµ ,  Bµ such that 

Aµ Aµ  =  Bµ Bµ  =  −1 , 

and we make a symmetric tensor out of them via 

εµν
(1)  =

df

   Aµ Bν  +  Aν Bµ (28.15)

Then, clearly, to satisfy the guage condition, we must have
kµ Aµ  =  kµ Bµ  =  0 . 

There are three independent vectors that satisfy this, for a given direction of k
→

. Call k̂ the
z-direction----then since kµ  =  (k, 0, 0, k), we have

Aµ  =  











 (0, −1, 0, 0)
 (0, 0, −1, 0)

 
1

√2
 (1, 0, 0, −1)  =  

1
k√2

 kµ

(28.16)

We see that if we pick----say----Bµ to be longitudinal, i.e. proportional to kµ , then we can always find

a transformation like Eq. 28.13 that will reduce εµν
(1) to zero. Thus we only can use the transverse

components (0, −1, 0, 0) and (0, 0, −1, 0) . We write
Aµ  =  (0, −1, 0, 0) (28.17a)

and
Bµ  =  (0, 0, −1, 0) . (28.17b)
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Similarly, we can construct a second symmetric tensor
εµν

(2)  =  α Aµ Aν  +  β Bµ Bν (28.18)

that cannot be reduced to zero by Eq. 28.13. But what are α and β? 

One obvious aspect of εµν
(1) is what happens to it when we transform the coordinates by a rotation

about the z-axis:
A  →    A cosθ  +  B sinθ
B  →  −A sinθ  +  B cosθ

(28.19)

εµν
(1)  →  εµν

(1) cos(2θ)  −  

Aµ Aν  −  Bµ Bν


 sin(2θ) (28.20)

Equation 28.20 suggests taking α = 1 ,  β = −1 in 28.19. We can test this by examining what happens
to e under rotation by an angle θ about the z-axis:

εµν
(2)  →  εµν

(1) sin(2θ)  +  εµν
(2) cos(2θ) . (28.21)

That is, the two tensors transform into each other under rotations of angle q about the z-axis, exactly
like the two orthogonal vectors in Eq. 28.19.

The fact that the coefficients involve cos(2θ) and sin(2θ) implies that the angular momentum carried
by a gravitational plane wave quantum is 2h

_
. It is worth reviewing briefly how we make this

identification. Recall that the (4-vector) solution of Maxwell’s equations is

Aµ  =  aµ eik ⋅ x

kµ kµ  =  0

kµ aµ  =  0  .

Gauge invariance means we can always add to Aµ a function ∂µ Λ(x) without changing anything.
Thus there is no significance to aµ  ∝  kµ, and we take aµ to be Aµ or Bµ above. Then a rotation about
the k̂ axis involves cos(θ) and sin(θ) as in Eq. 28.19. We can always write a rotation matrix about
the axis R in the form

R (θ)  =  e i J
→
 ⋅ n̂ θ (28.22)

where the 3 matrices J
→
 represent the angular momentum operator (in units of h

_
). Thus, the effect of

Eq. 28.22 operating on a state with definite z-component Jz  =  m is to multiply the state by a phase

ei m θ .

Finally, it can be shown† that massless particles with spin h
_
 S can have only 2 spin states, with
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† This contrasts with the 2S+1 states expected for a massive particle of spin S. We have just shown
this is the case when S=1 and S=2 (photon and graviton).



m  ≡  Jz  =  ± S .

Thus the electromagnetic field, being a massless vector field, has S = 1 because the rotation of its
polarization vectors involves cos(θ) and sin(θ), and we therefore conclude that gravitational quanta
naturally carry spin 2 because of the appearance of 2θ in the rotations about the propagation vector.

Gravitational radiation by a source
We recall the dynamical equation of gravitational radiation, in the weak-field limit:

∂λ ∂λ ϕµν  =  −16πG Tµν (28.1)

for which the (retarded) solution is (see Eq. 9.8 and the equations leading up to it)

ϕµν (x)  =  ∫ d3x’ ∫  
−∞

 t
dt’ 

Tµν (x→’, t’)
|x→’ − x→|

 δ(|x→’ − x→|  −  t + t’)

=  ∫ d3x’ 
Tµν (x→’, t  −  |x→’ − x→|)

|x→’ − x→|
(28.23)

Now, suppose Tµν is a localized, time-varying distribution of matter and energy. Then it of course
obeys the conservation equation

Tµν , ν  =  0 . (28.24)

Moreover, we are interested----as in the electromagnetic case----in the gravitational field far from the
source(s), i.e. for |x→|  >>  |x→’|. Clearly, there can be no outgoing radiation across a sphere of radius
R large compared with the extension of the source, from terms of the (distant) field that fall off faster
than 1/R. 

Thus we can replace |x→  −  x→’| with |x→|  =  R in the denominator of Eq. 28.23, and are left with
evaluating the integral

Sµν  =  ∫ d3x’ Tµν (x→’, t  −  |x→  −  x→’|) . (28.25)

The easiest way to deal with the integral is to write

Tµν (x→’, t)  =  ∫  
−∞

 +∞
dω  T

~µν (x→’, ω) (28.26)

so that, using
|x→  −  x→’|  ≈  R  −  x→’ ⋅ x̂  ,

and defining the propagation vector of the outgoing radiation

 k
→

  =
df

   ω x̂

(hat is, if we are observing gravitational radiation at point x→, the waves that get into our detector
propagate in the x̂ direction) we find

Sµν  =  ∫  
−∞

 +∞
dω eiω(R − t)  ∫ d3x’ T

~ µν (x→’, ω) e−i k
→

 ⋅ x→ ’ . (28.27)
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Now we make another approximation, the so-called long-wavelength limit. If the wavelength of the
gravitational radiation is long compared with the source, we may replace the factor

e−i k
→

 ⋅ x
→
 ’

appearing in Eq. 28.27 by unity. For a source such as two compact objects with masses of the order
M¤ in an orbit whose closest approach is the solar radius, 700,000 Km (very close indeed!) it is easy
to see that

kR  ≡  
ω
c

 R  ≈  


GM
c2





1⁄2

  ≈  10−3

hence the replacement is amply justified.

We see that the only non-trivial polarization components are (µν) = (jk), where the j,k directions

are orthogonal to k
→

. Thus we are interested in T jk. The conservation equation becomes

−i ω T
~ 0ν  +  ∂j T

~ jν  =  0 (28.28)

and, moreover,
∂j ∂k T

~
 jk  =  −ω2 T

~
 00 (28.29)

leading to

S jk  ≈  ∫  
−∞

 +∞
dω  eiω(R − t)  ∫  d3x→’ T

~ µν (x→’, ω) . (28.30)

We can rewrite Eq. 28.30 in a useful way: multiply Eq. 28.29 with x’r x’s and integrate over x’: we
find

∫ d3x’  x’r x’s  ∂j ∂k T
~

 jk (x’, ω)  =  −ω2 ∫ d3x’  x’r x’s  T
~

 00 (x’, ω) (28.31)

which can be integrated by parts twice using the identity

xr ∂
∂xk f(x)  ≡  

∂
∂xk x

r f(x)  −  δk
 r f(x) (28.32)

to get

∫ d3x’  T
~

 rs (x’, ω)  =  −  1
2
 ω2 ∫ d3x’  x’r x’s  T

~
 00 (x’, ω) . (28.33)

Eq. 28.33 now lets us write the field in the wave zone, in the long wavelength limit, as

ϕrs (x→, t)  =  −  4
3
  

G Q
..

(t − R ⁄ c)
R

(28.34)

where the −ω2 factor in Eq. 28.32 translates to the second time derivative, and where we have defined
the (retarded) quadrupole moment of the energy density of the source:

Qrs (t − R ⁄ c)  =
df

   ∫ d3x  


3
2
 xr xs  +  1

2
 r2 ηrs



 T
~

 00 (x, t − R ⁄ c) . (28.35)
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The astute student may be wondering, ‘‘Who ordered the term 1
2
 r2 ηrs appearing in the quadrupole

moment?’’ As we have already seen, a polarization tensor proportional to ηµν carries away no flux.
Therefore we can add such a term to the polarization tensor----but of course we want to add it with
the appropriate coefficient to give the quadrupole moment.

We now need to compute the flux of energy carried off by the gravitational wave. If tµν is the
energy-momentum tensor of the gravitational field, we see from----say----Ohanian, Eq. 4.62†, that

tµν  =  
1

16πG
 

2ϕαβ

, µ  ϕαβ , ν  −  ϕ, µ ϕ, ν  −  ηµν ϕαβ, λ ϕαβ, λ  −  1
2
 ϕ, λ ϕ , λ





  . (28.36)

Hence the flux across a surface-element of a sphere at x→  =  R k̂ is

t j0 k̂j R
2 dΩ  =  

1
16πG

 (2ϕαβ, 0 ϕαβ , j  −  ϕ, 0 ϕ, 
j) k̂j R

2 dΩ (28.37)

which, for a sinusoidally oscillating source of frequency ω, gives a total radiated power

P  =  
G ω6

9π
  Qrs Qrs ∫ dΩ 


P2 (cosθ)


2
  =  

4G ω6

45c5  Qrs Qrs . (28.38)

The difference (a factor 4) from Eq. 5.73 in Ohanian and Ruffini arises entirely from the factor of
two difference in the definition of the mass quadrupole tensor. That is, their quadrupoles are twice
as large as ours, which follow the standard conventions.

To obtain the above expression we have used

ϕ  =
df

   ϕ00  −  ∑ 
k

 ϕ kk  =  k̂j k̂k  ϕ
 jk ,

and
ϕ0k  =  k̂j  ϕ

 jk

i.e.

2ϕαβ, 0 ϕαβ, j  −  ϕ, 0 ϕ, j  =  

ϕ
. 00 ϕ

. 00  −  4 ∑ 
k

 ϕ
. 0k ϕ

. 0k  +  2∑ 
k, l

 ϕ
. kl ϕ

. kl


 k̂j

=  

k̂a k̂b k̂r k̂s  −  4δar k̂b k̂s  +  2δar δbs

  ϕ
.
 ab ϕ

. rs k̂j  .

The averages of the propagation vectors over solid angle are easily seen to be
1

4π
 ∫ dΩ  k̂a k̂b  =  1

3
 δab

and
1

4π
 ∫ dΩ  k̂a k̂b k̂r k̂s  =  1

15
 

δab δrs  +  δar δbs  +  δas δbr

  .
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† Note the difference in normalization----this comes from the way we have defined the Lagrangian.


