1. Suppose light in air is incident upon metal having a complex index of refraction $\tilde{n}=3+5 i$. Numerically compute a plot of the reflectances \mathcal{R}_{x} and \mathcal{R}_{y} vs. the angle of incidence θ_{1} between 0° and 90°. (Hint: find a program that can handle complex numbers, and have it evaluate the Fresnel equations for you.)
2. Saleh and Teich Problem 6.2-2, page 236.
3. Saleh and Teich Problem 6.2-3, page 236.
4. Saleh and Teich Problem 6.3-1, page 236.
5. (3 pts) Consider a plane wave incident on a uniaxial medium with indices n_{o} and n_{e}, as illustrated below. The angle of incidence is θ_{1}, and the optic axis of the medium is tangent to the surface and in the plane of incidence.
(a) Calculate the refraction angle θ_{2} for both TE and TM polarizations. (Note tht θ_{2} here is not the angle between the refracted wave and the optic axis!)
(b) In general, the Poynting vector \mathbf{S} is not parallel to \mathbf{k} in an anisotropic medium. In class we found the angle of \mathbf{S} to satisfy

$$
\tan \alpha=\frac{n_{e}^{2}}{n_{o}^{2}} \tan \theta_{2}
$$

for TM polarization. If $\theta_{1}=30^{\circ}$ and the medium is calcite with $n_{o}=1.66$ and $n_{e}=1.49$, evaluate θ_{2} and α for both polarizations.

