
Phys 531 Fourier Transforms

In this handout, I will go through the derivations of some of the results I gave in
class (Lecture 14, 10/21). I won’t reintroduce the concepts though, so if you haven’t
seen the lecture, you should watch it first. I’ll try to provide enough detail in the
calculations to illustrate some of the techniques for working with Fourier transforms.
I hope it is helpful, but you shouldn’t need any of this specific material for the
homework assignments or final exam.

1 Delta Functions

I defined

δ(ω) =
1

2π

∫

∞

−∞

eiωt dt (1)

and explained why δ(ω) = 0 for ω 6= 0 but δ(0) = ∞. A crucial property of the delta
function, however, is that

∫

∞

−∞

δ(ω) dω = 1.

I’ll derive this property here.
The infinite bounds on the integrals cause some difficulty, so let us interpret

∫

∞

−∞

eiωt dt

as

lim
T→∞

∫ T

−T

eiωt dt.

Then define

δT (ω) =
1

2π

∫ T

−T

eiωt dt

so that δ(ω) = limT→∞ δT (ω). We can simply integrate to get δT :

δT (ω) =
1

2π

∫ T

−T

eiωt dt

=
1

2πiω
eiωt

∣

∣

∣

∣

T

−T

=
1

2πiω

(

eiωT − e−iωT
)

=
1

πω
sin(ωT )

Now we need to evaluate
∫

∞

−∞
δT (ω) dω. This is a bit harder. The professional way

to do it is using contour integration, but we can avoid that with some simple tricks.
First, note that sin(ω)/ω is symmetric, so

∫

∞

−∞

δT (ω) dω =
2

π

∫

∞

0

sin(ωT )

ω
dω.
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Change variables to u = ωT , giving

2

π

∫

∞

0

sin(u)

u
du.

Now, make the unintuitive substitution

1

u
=

∫

∞

0

e−uv dv

to get
∫

∞

−∞

δT (ω) dω =
2

π

∫

∞

0

∫

∞

0

e−uv sin(u) dv du

=
1

iπ

∫

∞

0

∫

∞

0

e−uv
(

eiu − e−iu
)

du dv

=
1

iπ

∫

∞

0

∫

∞

0

[

eu(−v+i) − eu(−v−i)
]

du dv

The u integrals are easily done, giving

∫

∞

−∞

δT (ω) dω =
1

iπ

∫

∞

0

( −1

−v + i
+

1

−v − i

)

dv

=
1

iπ

∫

∞

0

2i

1 + v2
dv

=
2

π

∫

∞

0

1

1 + v2
dv

The v integral is again elementary. Substitute v = tan θ, so that dv → sec2 θ dθ and
the limits become 0 to π/2. But also, 1+v2 becomes 1+tan2 θ = sec2 θ which cancels

the sec2 θ term from the differential. The integral becomes
∫ π/2

0
dθ = π/2, so that

∫

∞

−∞

δT (ω) dω = 1.

Since this holds independently of T , it is reasonable to conclude that
∫

∞

−∞

δ(ω) dω = 1. (2)

There are some formal mathematical issues regarding the limit T → ∞, but we don’t
need to worry about them here.

Our result (2), combined with the other properties of δ(ω) that we know, is enough
to establish that for any function F (ω),

∫

F (ω)δ(ω − ω0) dω = F (ω0) (3)

which is the main result we’ll need.
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2 Calculating Transforms

On slide 29, I gave a table with the Fourier transforms of several functions. We did
the first in class, and I’ll go through the rest here.

The second and third lines of the table are easy. If f(t) = e−iω0t then

F (ω) =

∫

∞

−∞

eiωte−iω0t dt

=

∫

∞

−∞

ei(ω−ω0)t dt

By definition (1), this is
F (ω) = 2πδ(ω − ω0)

as the table gives. Note that by choosing ω0 = 0, this gives us the transform of
f(t) = 1.

If f(t) = δ(t − t0), then

F (ω) =

∫

∞

−∞

eiωtδ(t − t0) dt

= eiωt0 .

Note that δ(t) works just like δ(ω), or any other variable you might need to use. You
could more generally write (3) as

∫

∞

−∞

F (u)δ(u − u0) du = F (u0)

for any variable u.
The fourth transform listed takes more work. Say f(t) = e−t2/τ2

. Then

F (ω) =

∫

∞

−∞

e−t2/τ2

eiωtdt

=

∫

∞

−∞

e−t2/τ2+iωtdt.

We can simplify the integrand with a trick called “completing the square.” Note that

− t2

τ 2
+ iωt = − t2

τ 2
+ iωt −

(

iωτ

2

)2

+

(

iωτ

2

)2

,

since we’re just adding and subtracting the same thing. But the first three terms can
be factored:

[

− t2

τ 2
+ iωt −

(

iωτ

2

)2
]

+

(

iωτ

2

)2

=

[

−
(

t

τ
− iωτ

2

)2
]

− ω2τ 2

4
.
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So we get

F (ω) = e−ω2τ2/4

∫

∞

−∞

e−(t/τ−iωτ/2)2 dt

Change variables to u = t/τ − iωτ/2. Then dt → τ du, and the limits of the integral
don’t change since they are infinite. Actually, that’s a bit tricky: the limits really
become something like ∞ − iωτ/2, which isn’t quite the same thing as plain ∞.
Sometimes the imaginary bit matters, but not here, so we’ll just ignore it. (For
people who know something about contour integrals, we can displace the integration
path back to the real axis because the integrand has no poles.)

In any case, we get

F (ω) = τe−ω2τ2/4

∫

∞

−∞

e−u2

du.

You could just look the final integral up, but I’ll show you how to solve it for yourself.
Define its value to be I:

I =

∫

∞

−∞

e−u2

du.

Then consider

I2 =

∫

∞

−∞

e−u2

du

∫

∞

−∞

e−v2

dv

where we introduce v to keep track of which integral is which. Combined, we have

I2 =

∫∫

e−(u2+v2) du dv.

Now do this double integral in polar coordinates: (u, v) → (r, θ), where u = r cos θ
and v = r sin θ. Then du dv → r dr dθ and we have

I2 =

∫ 2π

0

∫

∞

0

re−r2

dr dθ

The θ integral gives a factor of 2π, and the r integral can be done with the substitution
s = r2. Then ds = 2r dr so

I2 = π

∫

∞

0

e−s ds.

The s integral is just unity, so I2 = π. But then I =
√

π and

F (ω) = τ
√

π e−ω2τ2/4

as the table indicates.

3 Convolution Theorem

The convolution theoerm states that if F (ω) = F1(ω)F2(ω), then

f(t) =

∫

∞

−∞

f1(T )f2(t − T ) dT,
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where F, F1 and F2 are respectively the transforms of f, f1 and f2. This is fairly easy
to prove.

We have

f(t) =
1

2π

∫

∞

−∞

F (ω)e−iωt dω

=
1

2π

∫

∞

−∞

F1(ω)F2(ω)e−iωt dω.

But in turn,

F1(ω) =

∫

∞

−∞

f1(t1)e
iωt1 dt1

and

F2(ω) =

∫

∞

−∞

f2(t2)e
iωt2 dt2.

Again, we can always relabel integration variables as we like.
Combining all these, we have

f(t) =
1

2π

∫∫∫

f1(t1)f2(t2)e
iω(t1+t2−t) dt1 dt2 dω.

Do the ω integral first, so that

f(t) =
1

2π

∫∫

f1(t1)f2(t2)

[
∫

∞

−∞

eiω(t1+t2−t) dω

]

dt1 dt2.

You should recognize the expression in brackets as 2πδ(t1 + t2 − t), so

f(t) =

∫∫

f1(t1)f2(t2)δ(t1 + t2 − t) dt1 dt2.

Use the δ-function to do the t2 integral, so that we can replace t2 with t − t1 to get

f(t) =

∫

∞

−∞

f1(t1)f2(t − t1) dt1.

Relabling t1 → T gives us our convolution result.
The correlation theorem and Parseval’s theorem have dervations very similar to

that of the convolution theorem. I’ll go through Parseval’s to demonstrate. The
theorem states that

∫

∞

−∞

|f(t)|2 dt =
1

2π

∫

∞

−∞

|F (ω)|2 dω

if f and F are a Fourier transform pair. Consider

∫

∞

−∞

|F (ω)|2 dω =

∫

∞

−∞

[
∫

∞

−∞

f(t1)e
iωt1 dt1

] [
∫

∞

−∞

f ∗(t2)e
−iωt2 dt2

]

dω.
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Again, reorder the integral to do the ω one first:

∫

∞

−∞

|F (ω)|2 dω =

∫∫

f(t1)f
∗(t2)

[
∫

∞

−∞

eiω(t1−t2) dω

]

dt1 dt2.

The term in brackets is 2πδ(t1 − t2) so

∫

∞

−∞

|F (ω)|2 dω = 2π

∫

∞

−∞

∫

∞

−∞

f(t1)f
∗(t2)δ(t1 − t2) dt1 dt2

and using the δ-function gives Parseval’s theorem:

∫

∞

−∞

|F (ω)|2 dω = 2π

∫

∞

−∞

f(t1)f
∗(t1) dt1 = 2π

∫

∞

−∞

|f(t)|2 dt.

4 Transform pairs

Finally, one thing I didn’t really go through in class is how to get the inverse Fourier
transform of a function F (ω) that has the same “form” as some g(t) whose transform
you know already. For instance, in class (slide 24), I calculated the inverse transform
of a square pulse function F (ω). We already knew the transform of a square pulse in
time, and we could have used that information to obtain f(t) rather than doing the
integral. The technique is nice to know, so I’ll go through it here.

Say we know that g(t) has transform G(ω). Then suppose we’re given F (ω) =
g(ω). That looks a little funny, so here’s an example: Say g(t) = cos(at) for some
constant a. Then G(ω) = π[δ(ω − a) + δ(ω + a)]. The question is: if we’re given a
transform F (ω) = cos(aω), what is f(t)? Obviously, a must have different units in
F , but the form is the same as g.

We want

f(t) =
1

2π

∫

∞

−∞

F (ω)e−iωt dω

=
1

2π

∫

∞

−∞

g(ω)e−iωt dω.

Now we know

g(t) =
1

2π

∫

∞

−∞

G(ω)e−iωt dω

so just relabeling variables t → ω and ω → t1 gives

g(ω) =
1

2π

∫

∞

−∞

G(t1)e
−iωt1 dt1.

Substitute this into the expression for f(t):

f(t) =
1

(2π)2

∫∫

G(t1)e
−iω(t+t1) dt1 dω.
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Once again, do the ω integral first

f(t) =
1

(2π)2

∫

∞

−∞

G(t1)

[
∫

∞

−∞

e−iω(t+t1) dω

]

dt1

=
1

2π

∫

∞

−∞

G(t1)δ(t + t1) dt1

=
1

2π
G(−t)

which is the desired result.
So in our example, if we have F (ω) = cos(aω), then

f(t) =
1

2π
[δ(−t − a) + δ(−t + a)] .

This can be simplified since δ(−t) = δ(t), so

f(t) =
1

2π
[δ(t + a) + δ(t − a)] .

For another example, apply this to the calulation we did in class. We wanted the
inverse transform of

F (ω) =

{

1 if |ω| < ωm

0 else

We know that the function g1

g1(t) =

{

1
τ

if |t| < τ
2

0 else

has Fourier transform
G1(ω) = sinc

(ωτ

2

)

.

Use the linearity properties to see that

g(t) =

{

1 if |t| < a

0 else

has transform G(ω) = 2a sinc(ωa). Then our F (ω) = g(ω) with a = ωm, so

f(t) =
1

2π
G(−t) =

1

2π

[

2ωm sinc(−tωm)
]

=
ωm

π
sinc(ωmt)

since sinc(−ωt) = sinc(ωt). This agrees with the result we got in class by just doing
the integral.

5 Summary

I’ve presented a pretty quick run through some of the important properties of Fourier
transforms. Again, a lot of this is more complicated than what we’ll be doing in class:
I’ll try to focus more on optics than on math. Nonetheless, you will be seeing many
of these ideas again, and I hope that filling out some of the steps will help everyone
feel more confident using the Fourier technique.
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