Phys 531 Assignment 3

1. Consider a series of m parallel planar interfaces, as shown. Starting from 0 , the index of refraction in the i th layer is n_{i}, and the angle of incidence on the i th interface is θ_{i-1}. Find the output angle θ_{m} in terms of the input angle θ_{0}.

2. Show that to someone looking straight down into a swimming pool, any object in the water will appear to be at about $3 / 4$ of its true depth.
3. A laser beam impinges on the top surface of a parallel glass plate of thickness t and index of refraction n. In terms of the angle of incidence, θ_{i}, determine the true length of the path through the glass, d, and the lateral displacement of the beam, δ.

4. Show from the Fresnel equations that $R_{\|}+T_{\|}=1$ and $R_{\perp}+T_{\perp}=1$. Restrict yourself to the case where the index and transmission angle are real.
5. Calculate the reflectances R_{\perp} and $R_{\|}$for the interface beween air and SF11 glass (index $n=1.7$) at incident angles of 0° and 45°. What is Brewster's angle in this case?
6. You notice the reflection of the sun in the still waters of a pond. If the angle of incidence of the sunlight on the water is about 60°, what fraction of the incident light are you actually observing? Note that sunlight, like most natural light, is an equal mixture of both polarization states.
7. A beam of light is normally incident on a right angle prism, as shown. What is the minimum value of the index of refraction such that the beam is totally internally reflected from the back surfaces?

