1. When left-circularly polarized light is normally incident on a surface, what is the polarization of the reflected wave? (Your result should hold for both internal and external incidence.)
2. Consider an elliptically polarized wave with

$$
\hat{\jmath}=\frac{1}{\sqrt{3}} \hat{\mathbf{x}}+e^{i \pi / 4} \sqrt{\frac{2}{3}} \hat{\mathbf{y}}
$$

(a) Use the formulas given in class to calculate the angle α and the eccentricity e of the ellipse traced out by \mathbf{E}.
(b) Suppose the wave is incident on an ideal polarizer with transmission axis at an angle θ to the x-axis. Numerically plot the transmission T as a function of θ and find: (i) the angle $\theta_{\max }$ at which the transmission is a maximum, (ii) the angle $\theta_{\min }$ at which it is a minimum, and (iii) the ratio of the maximum to minimum transmission values. Compare to the results of (a).
3. (a) Consider unpolarized light with irradiance I_{0} incident on a set of three ideal polarizers as shown. The first polarizer has its transmission axis along x, the second at an angle θ from the x axis, and the third along y. Calculate the transmitted irradiance as a function of θ. What angle gives the highest transmission, and what is the value of this transmission?
(b) What is the transmission if the second polarizer is replaced by a quarter-wave plate with fast axis at angle $\theta=45^{\circ}$?
(c) What if the second polarizer is replaced by a half-wave plate with fast axis at 45° ?

4. Quartz is a positive uniaxial crystal with $n_{e}=1.553$ and $n_{o}=1.544$. For what thicknesses does a quartz plate act as a quarter-wave retarder at $\lambda=633 \mathrm{~nm}$?
5. Suppose left-circularly polarized light is incident on a quarter wave plate with fast axis at an angle θ to the x-axis. Show that the output is linearly polarized and find the polarization angle α.
6. Express the rotation matrix

$$
\mathcal{R}(\theta)=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

in the basis of the circular-polarized states $\hat{\mathbf{e}}_{\mathcal{R}}$ and $\hat{\mathbf{e}}_{\mathcal{L}}$.

