What is Light?

Historical discussion: Hecht Ch. 1
Simplest theory: light consists of a stream of particles.
The particles

- are emitted by a source (ie, a lamp),
- bounce off an object (ie, a book),
- and enter your eye.

Usually the particles travel in straight lines called rays.
Optical elements like lenses and mirrors work by deflecting the rays:

Particle theory is called ray optics or geometrical optics.

- The nature of the "particles" is not specified, so focus more on trajectories $=$ rays.

Ray optics is useful for many problems in optics, including most imaging and illumination applications.

It fails to explain phenomena like interference, diffraction

- require wave optics

Wave Optics (Hecht Ch. 2)
Say light consists of a wave
$=$ disturbance in a medium
Just like water waves, sound waves
For light, medium is "electromagnetic field"

- not very well defined, but doesn't matter

Wave optics is very accurate:
Treat wave optics as the "true" theory for most of this course

But ray optics is easier, use it when possible!

Quantum Optics

Wave optics still fails for some phenomena:
photoelectric effect, blackbody radiation
Best theory is quantum optics:
light has both wave and particle aspects
Really light is a quantum field

- trickier than "typical" quantum mechanics

Discuss a bit at end of course if time permits

Waves (Hecht 2.1)

Start by thinking about how to describe waves.
Simple mathematical approach:
function describes a wave if

$$
f(x, t)=f(x-v t)
$$

Here f indicates the amplitude of the disturbance.
Shape of disturbance travels to $+x$ at speed v.

Call this a travelling wave.

Three dimensional version: $f(\mathbf{r}, t)=f(\mathbf{r}-\mathbf{v} t)$ vector position \mathbf{r}, and velocity \mathbf{v}

Travelling waves easy to define, but too limiting.

- rock in pond: wave spreads in 2D
- sound wave: spreads in 3D

We'll see that these can be described by superpositions
$=$ linear sums of travelling waves.

Simple example:
oscillating guitar string

Mathematically, $f(x, t)=\sin (k x) \sin (\omega t)$ for some k, ω.
Doesn't have form $f(x-v t)$, but still seems like a wave.
In fact, have $f(x, t)=\frac{1}{2}[\cos (k x-\omega t)-\cos (k x+\omega t)]$
$=$ sum of two waves with $v=\omega / k$

Wave Equation

How can we tell if a function is a sum of travelling waves?
Any function $f(x-v t)$ has $\frac{\partial f}{\partial x}=-\frac{1}{v} \frac{\partial f}{\partial t}$.
Any function $f(x+v t)$ has $\frac{\partial f}{\partial x}=+\frac{1}{v} \frac{\partial f}{\partial t}$.

So if $\psi(x, t)$ is a sum of travelling waves, must have

$$
\left(\frac{\partial}{\partial x}-\frac{1}{v} \frac{\partial}{\partial t}\right)\left(\frac{\partial}{\partial x}+\frac{1}{v} \frac{\partial}{\partial t}\right) \psi(x, t)=0
$$

or

$$
\frac{\partial^{2} \psi}{\partial x^{2}}-\frac{1}{v^{2}} \frac{\partial^{2} \psi}{\partial t^{2}}=0
$$

Call this the wave equation. Say that function describes a wave if and only if it satisfies the wave equation.

Generalize to 3D:

$$
\frac{\partial^{2} \psi}{\partial x^{2}}+\frac{\partial^{2} \psi}{\partial y^{2}}+\frac{\partial^{2} \psi}{\partial z^{2}}-\frac{1}{v^{2}} \frac{\partial^{2} \psi}{\partial t^{2}}=0
$$

Recognize Laplacian operator $\nabla^{2} \equiv \frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}$
so write 3D wave equation as

$$
\nabla^{2} \psi(\mathbf{r}, t)=\frac{1}{v^{2}} \frac{\partial^{2} \psi}{\partial t^{2}}
$$

Question: Which of these would you consider a wave?
Dye spreading in a pool of water.
A line of dominos falling over.
A superposition of two travelling waves with different speeds.
Which do you think satisfies the wave equation?

Harmonic Waves (Hecht 2.2)

Most important solutions of wave equation are harmonic waves:

$$
\psi(x, t)=A \cos (k x-\omega t+\phi)
$$

where
$A \equiv$ amplitude
$k \equiv$ wave number (units m^{-1})
$\omega \equiv$ frequency (units rad $/ \mathrm{s}$)
$\phi \equiv$ phase (units rad)
Also have

$$
\begin{aligned}
& \lambda=2 \pi / k \equiv \text { wave length (units } \mathrm{m} \text {) } \\
& \tau=2 \pi / \omega \equiv \text { period (units } \mathrm{s} \text {) } \\
& \nu=1 / \tau=\omega / 2 \pi \equiv \text { frequency (units cycles/s or } \mathrm{Hz} \text {) }
\end{aligned}
$$

Remember, the wave equation requires that $\omega=v k$.
Harmonic waves are periodic in both space and time:

$$
\psi(x+\lambda, t)=\psi(x, t+\tau)=\psi(x, t)
$$

These definitions and relationships are very important, so you should memorize them!

Question: What are the units of A ?

The 3D version of a harmonic wave is called a plane wave:

$$
\psi(\mathbf{r}, t)=A \cos (\mathbf{k} \cdot \mathbf{r}-\omega t+\phi)
$$

Here \mathbf{k} is the wave vector, while $k=|\mathbf{k}|$ is the wave number.
We still have $k=\omega / v=2 \pi / \lambda$. The condition of spatial periodicity becomes

$$
\psi(\mathbf{r}+\lambda \widehat{\mathbf{k}}, t)=\psi(\mathbf{r}, t)
$$

where $\widehat{\mathbf{k}}=\mathrm{k} / k$ is the propagation direction of the wave.

Complex Representation (Hecht 2.5)

Harmonics waves are useful, but trig functions get tedious. Instead represent with complex functions.

Complex numbers: form $z=x+i y$, where $i=\sqrt{-1}$.
Define $x \equiv$ real part, write $\operatorname{Re} z$

$$
y \equiv \text { imaginary part Im } z
$$

Complex numbers follow the normal rules of algebra:

$$
\begin{aligned}
& \left(x_{1}+i y_{1}\right)+\left(x_{2}+i y_{2}\right)=\left(x_{1}+x_{2}\right)+i\left(y_{1}+y_{2}\right) \\
& \begin{aligned}
\left(x_{1}+i y_{1}\right) & \left(x_{2}+i y_{2}\right)=x_{1}\left(x_{2}+i y_{2}\right)+i y_{1}\left(x_{2}+i y_{2}\right) \\
& =x_{1} x_{2}+i x_{1} y_{2}+i y_{1} x_{2}-y_{1} y_{2} \\
& =\left(x_{1} x_{2}-y_{1} y_{2}\right)+i\left(x_{1} y_{2}+y_{1} x_{2}\right)
\end{aligned}
\end{aligned}
$$

Also define complex conjugate $z^{*} \equiv x-i y$ magnitude $|z| \equiv \sqrt{x^{2}+y^{2}}=\sqrt{z z^{*}}$

Main reason we use complex numbers is Euler identity:

$$
e^{i \theta}=\cos \theta+i \sin \theta
$$

Prove with Taylor's expansions:

$$
\begin{aligned}
e^{i \theta} & =1+i \theta+\frac{1}{2}(i \theta)^{2}+\frac{1}{6}(i \theta)^{3}+\ldots \\
& =\left(1-\frac{1}{2} \theta^{2}+\ldots\right)+i\left(\theta-\frac{1}{6} \theta^{3}+\ldots\right) \\
& =\cos \theta+i \sin \theta
\end{aligned}
$$

So can write any complex number in polar form: $z=r e^{i \theta}$ with $r \cos \theta=x$ and $r \sin \theta=y$
Note $|z|=r\left|e^{i \theta}\right|=r$

Use Euler identity to write a harmonic wave as

$$
\psi(x, t)=\operatorname{Re}\left\{\left[A e^{i \phi}\right] e^{i(k x-\omega t)}\right\}
$$

Usually just write

$$
\psi(x, t)=A e^{i(k x-\omega t)}
$$

where

- $A=|A| e^{i \phi}$ is complex: called complex amplitude
- implicit that only real part of ψ is actual wave

This lets us work with exponentials instead of sines and cosines.

Do all math with complex form, take real part at end.

Question: What makes exponentials easier to use than trig functions?

Generalize to 3D:
Plane wave $\psi(\mathbf{r}, t)=A e^{i(\mathbf{k} \cdot \mathbf{r}-\omega t)}$
Called plane wave because surfaces of constant ψ are planes

- surfaces called wave fronts

Here wavefronts $\perp \hat{\mathbf{k}}$

Spherical wave (Hecht 2.9)

Another 3D wave:

$$
\psi=\frac{A}{r} e^{i(\mathbf{k} \cdot \mathbf{r}-\omega t)}
$$

- $A=$ (complex) amplitude
- $r=|\mathbf{r}|=\sqrt{x^{2}+y^{2}+z^{2}}$
- Wave fronts are spheres centered at $r=0$
- Represents wave expanding from point source

Converging spherical wave: $\psi=\frac{A}{r} e^{i(\mathbf{k} \cdot \mathbf{r}+\omega t)}$
Use spherical waves for light emitted by source or converging to focus.

Plane Wave Decomposition

Can write spherical wave as sum of plane waves:

$$
\frac{e^{i k r}}{k r}=\frac{i}{2 \pi} \int_{-\infty}^{\infty} \int_{m} \frac{1}{m} e^{i k(p x+q y+m|z|)} d p d q
$$

for $m=\sqrt{1-p^{2}-q^{2}} \quad$ (can be imaginary)
This is the Weyl representation of a spherical wave

- Uses complex wave vectors
- Actually pretty hard to prove
- Demonstrates point about nontrivial superpositions

