Phys 531 Lecture 10
5 October 2004
Lens System Analysis
Last time, finished survey of optical elements ray diagrams, mirrors, stops, prisms

Also, analyzed simple lens system: two thin lenses separated by d

Analyzed by iterating thin lens equation image of first lens $=$ object of second

Today, develop a better way

Outline:

- Ray matrix method
- Thick lens formalism

Next time: study some real systems

Ray Matrices (Hecht 6.2.1)
Good lens systems typically have 4-8 elements Individual elements not always thin

Plössl eyepiece:

Common in telescopes

To analyze:
(a) Find image from first surface $=$ object of second
(b) Find image from second surface
$=$ object of third

Iterate until finished

Analytical solution useless for $>$ two surfaces
Computer solution OK

- cumbersome to program
- little insight

Better way:
Consider single ray at some interface

Described by two parameters: angle α height y

Can write as vector $\left[\begin{array}{l}\alpha \\ y\end{array}\right]$

Note: $\left[\begin{array}{l}\alpha \\ y\end{array}\right]$ not a "normal" vector

- units are different
- (α, y) not coordinates of anything

Can use just like a vector anyway

Better definition: $\mathbf{v}=\left[\begin{array}{c}n \alpha \\ y\end{array}\right]$

Optics books: $\left[\begin{array}{c}n \alpha \\ y\end{array}\right] \quad$ Laser books: $\left[\begin{array}{c}y \\ \alpha\end{array}\right]$

Strategy:

Determine how v propagates through system

First, plane interface:

Paraxial limit: $\alpha \ll 1$
Snell's Law says $n_{1} \alpha_{1}=n_{2} \alpha_{2}$
At boundary, y doesn't change
With optics convention, \mathbf{v} is constant!

Consider curved interface:

Snell's Law: $n_{1}\left(\alpha_{1}+\phi\right)=n_{2}\left(\alpha_{2}+\phi\right)$
with $\phi=\frac{y}{R}$

So $n_{2} \alpha_{2}=n_{1} \alpha_{1}+\left(n_{1}-n_{2}\right) \phi$

$$
=n_{1} \alpha_{1}+\frac{n_{1}-n_{2}}{R} y
$$

Define $\mathcal{D}=\frac{n_{2}-n_{1}}{R}=$ power of surface
Like power $=1 / f$ for thin lens unit $=$ diopter

Then $n_{2} \alpha_{2}=n_{1} \alpha_{1}-\mathcal{D} y$
Again, y same on either side

Linear relationship: can write in matrix form:

$$
\left[\begin{array}{c}
n_{1} \alpha_{1} \\
y
\end{array}\right]=\left[\begin{array}{cc}
1 & -\mathcal{D} \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
n_{2} \alpha_{2} \\
y
\end{array}\right]
$$

or

$$
\mathbf{v}_{1}=\mathcal{R} \mathbf{v}_{2}
$$

$\mathcal{R}=$ refraction matrix

Note, if curvature $R \rightarrow \infty$, matrix $\mathcal{R} \rightarrow\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

$$
\mathbf{v}_{1}=\mathbf{v}_{2}, \text { as before }
$$

For thin lens in air, use $\mathcal{D}=1 / f$

$$
\mathcal{R}_{\text {lens }}=\left[\begin{array}{cc}
1 & -1 / f \\
0 & 1
\end{array}\right]
$$

Question: What is the matrix for a spherical mirror with radius R ?

So, effect of lens $=$ matrix multiplication Handle many lenses by multiplying matrices

Computationally easy!

But also need ray propagation between surfaces

Free propagation:

Paraxial limit: $y_{2}=y_{1}+\alpha d$ and $n \alpha=$ constant

$$
\begin{aligned}
& {\left[\begin{array}{c}
n_{2} \alpha_{2} \\
y_{2}
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
d / n & 1
\end{array}\right]\left[\begin{array}{c}
n_{1} \alpha_{1} \\
y_{1}
\end{array}\right]} \\
& \text { or } \mathbf{v}_{2}=\mathcal{T} \mathbf{v}_{1}
\end{aligned}
$$

Transfer matrix \mathcal{T}

In general, \mathcal{R}, \mathcal{T} called ray matrices
Multiply to get matrix for complete system
Example:

Consider ray starting at $\mathbf{v}_{o}=\left[\begin{array}{l}\alpha_{o} \\ y_{o}\end{array}\right]$

Just before first lens: $\mathbf{v}=\mathcal{T}\left(d_{1}\right) \mathbf{v}_{o}$ Just after first lens: $\mathbf{v}=\mathcal{R}\left(f_{1}\right) \mathcal{T}\left(d_{1}\right) \mathbf{v}_{o}$

At final plane: $\mathbf{v}_{f}=\mathcal{T}\left(d_{3}\right) \mathcal{R}\left(f_{2}\right) \mathcal{T}\left(d_{2}\right) \mathcal{R}\left(f_{1}\right) \mathcal{T}\left(d_{1}\right) \mathbf{v}_{o}$
Note reversed order!

Define $\mathbf{v}_{f}=\mathcal{M} \mathbf{v}_{o}$
$\mathcal{M}=$ system matrix
relates rays at output to rays at input

For simple system, can get \mathcal{M} analytically
For any system, easy to get \mathcal{M} numerically like tracing all possible rays at once

Generally write

$$
\mathcal{M}=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right] \quad\left(\text { Hecht: }\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\right)
$$

Coefficients (A, B, C, D) completely define system (in paraxial limit)

Ray matrices sometimes called "ABCD matrices"

Example:

Say $d_{1}=10 \mathrm{~cm}, f=25 \mathrm{~cm}, d_{2}=20 \mathrm{~cm}$
Then $\mathcal{M}=\left[\begin{array}{cc}1 & 0 \\ 20 & 1\end{array}\right]\left[\begin{array}{cc}1 & -0.04 \\ 0 & 1\end{array}\right]\left[\begin{array}{cc}1 & 0 \\ 10 & 1\end{array}\right]$
$=\left[\begin{array}{cc}1 & 0 \\ 20 & 1\end{array}\right]\left[\begin{array}{cc}0.06 & -0.04 \\ 10 & 1\end{array}\right]$
$=\left[\begin{array}{cc}0.6 & -0.04 \mathrm{~cm}^{-1} \\ 22 \mathrm{~cm} & 0.2\end{array}\right]$

Analytically, get

$$
\mathcal{M}=\left[\begin{array}{cc}
1-\frac{d_{1}}{f} & -\frac{1}{f} \\
d_{1}+d_{2}-\frac{d_{1} d_{2}}{f} & 1-\frac{d_{2}}{f}
\end{array}\right]
$$

Supposed to know everything about system ask: given $s_{o}=d_{1}$, where is image formed?

Imaging system: $y_{\text {out }}$ depends on $y_{\text {in }}$, not $\alpha_{\text {in }}$
Compare $\left[\begin{array}{l}\alpha \\ y\end{array}\right]_{\text {out }}=\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]\left[\begin{array}{l}\alpha \\ y\end{array}\right]_{\text {in }}$
Need $C=0$

In example $C=d_{1}+d_{2}-\frac{d_{1} d_{2}}{f}$
So need $d_{1}+d_{2}=\frac{d_{1} d_{2}}{f}$
or $\frac{1}{d_{1}}+\frac{1}{d_{2}}=\frac{1}{f}$
Works!

Can apply to any system

Procedure:

(1) Calculate vertex-to-vertex matrix \mathcal{M}_{v}
$=$ just before first surface to just after last

$$
\text { Say } \mathcal{M}_{v}=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

(2) Given object distance s_{o}, calculate

$$
\mathcal{M}=\mathcal{T}\left(s_{i}\right) \mathcal{M}_{v} \mathcal{T}\left(s_{o}\right)
$$

for arbitary s_{i} :

$$
\mathcal{M}=\left[\begin{array}{cc}
a+b s_{o} & b \\
a s_{i}+b s_{o} s_{i}+c+d s_{o} & d+b s_{i}
\end{array}\right]
$$

(3) Solve for $C=0$:

$$
a s_{i}+b s_{o} s_{i}+c+d s_{o}=0
$$

gives

$$
s_{i}=-\frac{c+d s_{O}}{a+b s_{O}}
$$

Also magnification $m=y_{i} / y_{o}$ but if $C=0$, then $y_{i}=D y_{o}$

$$
\Rightarrow m=D=d+b s_{i}
$$

This is really powerful!

Explore imaging further...
But first, a general property:
Any ray matrix has determinant $=1$
$\operatorname{det} \mathcal{M} \equiv\left|\begin{array}{ll}A & B \\ C & D\end{array}\right|=A D-B C=1$
Proof:

- Know $\operatorname{det} \mathcal{R}=1$ and $\operatorname{det} \mathcal{T}=1$
- Matrix property:

$$
\operatorname{det}\left(\mathcal{M}_{1} \mathcal{M}_{2}\right)=\operatorname{det}\left(\mathcal{M}_{1}\right) \operatorname{det}\left(\mathcal{M}_{2}\right)
$$

- Ray matrix $\mathcal{M}=$ product of \mathcal{T} 's and \mathcal{R} 's
- So $\operatorname{det} \mathcal{M}=$ product of 1 's $=1$

Previous example:

$$
\mathcal{M}=\left[\begin{array}{cc}
0.6 & -0.04 \mathrm{~cm}^{-1} \\
22 \mathrm{~cm} & 0.2
\end{array}\right]
$$

So $A D-B C=0.6 \cdot 0.2+0.04 \cdot 22=1$

Identity useful in derivations

Practial application:
error check for calculations
... back to imaging
Ray matrix defines system
Like focal length defines thin lens

For thin lens, ray diagrams still helpful: visual representation of lens effect

Develop ray diagram formalism for general system

Thick Lens Picture (Hecht 6.1)
Suppose vertex-vertex matrix $\mathcal{M}_{v}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$
Where are focal points?
Front focal point $=$ object point imaged to ∞

Want output angle $\alpha_{2}=0$ for input position $y_{1}=0$

Have

$$
\mathbf{v}_{2}=\mathcal{M}_{v} \mathcal{T}(s) \mathbf{v}_{1}
$$

or

$$
\left[\begin{array}{c}
0 \\
y_{2}
\end{array}\right]=\left[\begin{array}{cc}
a+s b & b \\
c+s d & d
\end{array}\right]\left[\begin{array}{c}
\alpha_{1} \\
0
\end{array}\right]
$$

So require $a+s b=0$
Define $s=$ front focal length (ffi)

$$
\begin{aligned}
\mathrm{ffl} & =-\frac{a}{b} \\
& =\text { distance of front focal point } \\
& \quad \text { from front vertex }
\end{aligned}
$$

For rays emitted from focal point, have

$$
\begin{aligned}
y_{2} & =(c+s d) \alpha_{1}=\left(c-\frac{a d}{b}\right) \alpha_{1} \\
& =\left(\frac{b c-a d}{b}\right) \alpha_{1}=-\frac{1}{b} \alpha_{1}
\end{aligned}
$$

Acts like thin lens located $-1 / b$ from focal point

Define focal length of system $=-1 / b$
Call location of effective Iens $=$
front principle plane
Intersection with axis $=$ (front) principle point H_{1}

Distance from vertex to principle point

$$
=f-\mathrm{ffl}=\frac{a-1}{b}
$$

Similar: define back focal point
$=$ focus of horizontal input rays

Back focal length $=$ distance from back vertex to back focal point

To find back focal point:

$$
\begin{aligned}
{\left[\begin{array}{c}
\alpha_{2} \\
0
\end{array}\right] } & =\left[\begin{array}{ll}
1 & 0 \\
s & 1
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{c}
0 \\
y_{1}
\end{array}\right] \\
& =\left[\begin{array}{cc}
a & b \\
a s+c & b s+d
\end{array}\right]\left[\begin{array}{c}
0 \\
y_{1}
\end{array}\right] \\
& =\left[\begin{array}{c}
b \\
b s+d
\end{array}\right] y_{1}
\end{aligned}
$$

So $\mathrm{bfl}=s=-\frac{d}{b}$

Intersection of rays defines back principle plane

Have $y_{1}=-f \alpha_{2}$
Again $f=-\frac{1}{b}$
Distance from back principle point to back vertex

$$
=f-\mathrm{bfl}=\frac{d-1}{b}
$$

Gives thick lens picture

$\mathrm{H}_{1} \quad \mathrm{H}_{2}$
Draw diagram just like thin lens
but rays skip across between principle planes
Even get that ray aimed at H_{1} exits from H_{2} without deviation

Can specify system with either ($f, \mathrm{ffl}, \mathrm{bfl}$) or \mathcal{M}_{v}

- matrix good for calculations
- focal lengths good for picture

Question: There are only three focal parameters, but four elements of \mathcal{M}_{v}. How many parameters does it take to specify system?

Note really one more parameter: vertex-to-vertex distance

Note, still have sign convention:
if $f<0$, then "front" focal point is behind lens
Often have order of H_{1}, H_{2} reversed
in picture, rays skip backwards

Question: If the focal length of a system is 5 cm and the back focal length is -2 cm , where is the back principle point?

Finish with example
System: glass sphere radius $R=1 \mathrm{~cm}$
two hemispheres: front $n_{1}=1.5$, back $n_{2}=1.7$

Want to characterize lens

First find \mathcal{M}_{v} :
$\mathcal{M}_{v}=\mathcal{R}\left(-R, n_{2} \rightarrow\right.$ air $) \mathcal{T}\left(R, n_{2}\right) \mathcal{T}\left(R, n_{1}\right) \mathcal{R}\left(R\right.$, air $\left.\rightarrow n_{1}\right)$ with

$$
\mathcal{R}\left(R, n_{1} \rightarrow n_{2}\right)=\left[\begin{array}{cc}
1 & \frac{n_{1}-n_{2}}{R} \\
0 & 1
\end{array}\right]
$$

and

$$
\mathcal{T}(d, n)=\left[\begin{array}{ll}
1 & 0 \\
\frac{d}{n} & 1
\end{array}\right]
$$

Remember, can ignore plane boundaries!

Put in numbers:

$$
\begin{gathered}
\mathcal{M}_{v}=\left[\begin{array}{cc}
1 & -0.7 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0.588 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0.667 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & -0.5 \\
0 & 1
\end{array}\right] \\
\mathcal{M}_{v}=\left[\begin{array}{cc}
0.125 & -0.761 \mathrm{~cm}^{-1} \\
1.255 \mathrm{~cm} & 0.373
\end{array}\right]
\end{gathered}
$$

Check: $\operatorname{det}\left(\mathcal{M}_{v}\right)=1$

Then $f=-1 / b=1.31 \mathrm{~cm}$

$$
\begin{aligned}
& \mathrm{ffl}=-a / b=a f=0.164 \mathrm{~cm} \\
& \mathrm{bfl}=-d / b=d f=0.433 \mathrm{~cm}
\end{aligned}
$$

Picture

Principle planes separated by 0.2 mm system acts almost exactly like thin lens

Summary

- Can analyze paraxial rays with matrix technique
- Arbitrary system decribed by single matrix
- Alternatively, use thick lens picture

