Phys 531 Lecture 14 21 October 2004

Fourier Transform

Last time, looked at how waves add

Spatial variations: interference pattern

Time variations: beat note

Claimed that you could construct arbitrary pulse by adding fields with different ω 's

Today, show how: Fourier transform

1

Outline:

- Motivation
- Definition
- Transform properties
- Spatial transforms

Lots of math today

Next time:

- Apply Fourier methods to wave propagation
- Start working on diffraction

Motivation

Lecture 1:

Claimed any wave = sum of plane waves

For now, show that:

Any function of time f(t) = sum of harmonic functions $e^{-i\omega t}$

More general: any function

More specific: single variable

imagine $f(t) = E(\mathbf{r}, t)$ at fixed \mathbf{r}

Talk about full waves again at end

3

Why should $f(t) = \text{sum of } e^{i\omega t}$'s? = sum of sines and cosines?

Make components add constructively where f large destructively where f small

Example: add $f_n = \cos[(1.2)^n \omega t]$ for n = 1 to 9:

Sum gives peak at t = 0:

More cosines → sharper peak, flatter background

If you can make sharp peaks: any f(t) = sum of peaks at different t's

5

Fourier Transform (Hecht 7.3, 7.4, 11.1)

Most general sum = integral

Can write
$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{-i\omega t} d\omega$$

 $F(\omega) = \text{coefficients of sum}$

 $1/2\pi = normalizing factor$

Fine, but how to determine $F(\omega)$?

Basic Fourier trick:

multiply both sides by $e^{i eta t}$ and integrate over t

$$\int_{-\infty}^{\infty} e^{i\beta t} f(t) dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{i\beta t} F(\omega) e^{-i\omega t} d\omega dt$$

Change order of integrals on rhs:

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) \left(\int_{-\infty}^{\infty} e^{i(\beta - \omega)t} dt \right) d\omega$$
$$= \int_{-\infty}^{\infty} F(\omega) \delta(\beta - \omega) d\omega$$

for

$$\delta(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i\omega t} dt \equiv$$
 "delta function"

7

Consider $\delta(\omega)$ (Hecht 11.2.3)

If $\omega \neq 0$, then $e^{i\omega t}$ oscillates +/-

So $\int e^{i\omega t}dt$ averages to zero:

Expect
$$\delta(\omega) = 0$$
 for $\omega \neq 0$

But for
$$\omega=0$$
, $e^{i\omega t}=e^0=1$ So $\int_{-\infty}^{\infty}e^{i\omega t}dt\to\int_{-\infty}^{\infty}dt=\infty$

Like adding up infinite number of cosines: get infinitely high, infinitely narrow peak

Important property:

$$\int_{-\infty}^{\infty} \delta(\omega) d\omega = \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{i\omega t} dt \, d\omega = 1$$

delta function is normalized

Derived in handout

Go back to

$$\int_{-\infty}^{\infty} e^{i\beta t} f(t) dt = \int_{-\infty}^{\infty} F(\omega) \delta(\beta - \omega) d\omega$$

delta function peaked at $\omega = \beta$, zero elsewhere

9

At $\omega = \beta$, have $F(\omega) = F(\beta)$

So have

$$\int_{-\infty}^{\infty} e^{i\beta t} f(t)dt = F(\beta) \int_{-\infty}^{\infty} \delta(\beta - \omega) d\omega = F(\beta)$$

Usually write

$$F(\omega) = \int_{-\infty}^{\infty} f(t)e^{i\omega t}dt$$

Call F = Fourier transform of f

Then f = inverse Fourier transform of F:

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{-i\omega t} d\omega$$

Other definitions possible:

$$F(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t)e^{-i\omega t}dt$$
$$f(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} F(\omega)e^{i\omega t}d\omega$$

or
$$F(\nu) = \int_{-\infty}^{\infty} f(t)e^{i2\pi\nu t}dt$$

$$f(t) = \int_{-\infty}^{\infty} F(\nu)e^{-i2\pi\nu t}d\nu$$

 $\nu = \omega/2\pi = {\rm frequency~in~Hz}$

Our version: all ω integrals have $1/2\pi$ factor

11

Do an example:

Say
$$f(t) = 1/\tau$$
 if $-\frac{\tau}{2} < t < \frac{\tau}{2}$
= 0 otherwise

Normalized to 1

Calculate $F(\omega)$:

$$F(\omega) = \int_{-\infty}^{\infty} f(t)e^{i\omega t}dt$$

$$= \frac{1}{\tau} \int_{-\tau/2}^{\tau/2} e^{i\omega t}dt$$

$$= \frac{1}{i\omega\tau} \left(e^{i\frac{\omega\tau}{2}} - e^{-i\frac{\omega\tau}{2}} \right)$$

$$= \frac{2}{\omega\tau} \sin\left(\frac{\omega\tau}{2}\right)$$

13

Define $\sin(\theta)/\theta \equiv \operatorname{sinc} \theta$

Have sinc(0) = 1 (peak value)

$$sinc(n\pi) = 0$$
 (integer $n \neq 0$)

Peak width $\Delta \theta \approx 2\pi$

So
$$F(\omega) = \operatorname{sinc}\left(\frac{\omega\tau}{2}\right)$$

Peaked at $\omega = 0$
Width $\Delta\omega = \pi/\tau$

General feature:

width $\Delta \omega$ of $F(\omega)$ larger when width Δt of f(t) is smaller

Can show $\Delta\omega\Delta t \geq 1/2$ (for particular definition of widths)

15

Need high frequencies if f changes quickly always expect $\omega_{\rm max} \approx 1/\delta t$ δt = time scale for f(t) to change

For rectangular pulse, $\delta t \rightarrow 0$

See $F(\omega)$ decreases slowly $\propto \omega^{-1}$ for $\omega \to \infty$ no definite ω_{max}

Question: If we set $F(\omega) = 0$ for $|\omega|$ greater than some ω_{max} , how would f(t) change?

Properties of Fourier Transform (Hecht 11.2, handout)

A. Even for real f(t), $F(\omega)$ can be complex

$$F(\omega) = \int f(t)e^{i\omega t}dt$$
$$F^*(\omega) = \int f(t)e^{-i\omega t}dt$$

So
$$F - F^* = \int f(t) \left(e^{i\omega t} - e^{-i\omega t} \right) dt$$

$$= 2i \int f(t) \sin(\omega t) dt$$

$$= 0 \text{ only if } f(t) = f(-t)$$

17

Why is F complex? Because we defined F with complex exponentials

Also explains why we get $\omega < 0$ terms: in complex space $\omega < 0$ and $\omega > 0$ are different

If f real, then $F(-\omega) = F^*(\omega)$ all information in $\omega > 0$ terms

Fits well with complex representation of fields: we're just suppressing $\omega < 0$ components

B. Linearity

If
$$f(t) = af_1(t) + bf_2(t)$$
 then

$$F(\omega) = aF_1(\omega) + bF_2(\omega)$$

where F_1 = transform of f_1 F_2 = transform of f_2

Very useful:

Often complicated f = sum of simple f's

19

Say pulses width T, height = AGap width = T

Remember $\mathrm{sinc}(\omega \tau/2) =$ transform of pulse width τ , height $1/\tau$

First pulse width $\tau=3T$, second pulse $\tau=T$ Adjust amplitudes of F accordingly

Then
$$F(\omega) = 3AT \operatorname{sinc}\left(\frac{3\omega T}{2}\right) - AT \operatorname{sinc}\left(\frac{\omega T}{2}\right)$$

C. Translation Properties

If
$$f(t) = g(t + \tau)$$
 then

$$F(\omega) = e^{-i\omega\tau}G(\omega)$$

where G = transform of g

If
$$f(t) = e^{-i\omega_0 t} g(t)$$
 then

$$F(\omega) = G(\omega - \omega_0)$$

Also useful for obtaining new transforms

21

Example: pulsed harmonic signal

$$f = Ae^{-i\omega_0 t}$$
 for $|t| < \tau/2$

= 0 otherwise

Then
$$F(\omega) = A\tau \operatorname{sinc}\left[\frac{(\omega - \omega_0)\tau}{2}\right]$$

Peak in ω space centered at ω_0

Question: What would the transform look like if $f = \cos(\omega_0 t)$ for $|t| < \tau/2$ and f = 0 otherwise?

D. Convolution

If $F(\omega) = F_1(\omega)F_2(\omega)$, then

$$f(t) = \int_{-\infty}^{\infty} f_1(T) f_2(t - T) dT$$

where $f_1, f_2 =$ inverse transforms of F_1, F_2 Say that f = convolution of f_1 and f_2 Lets you modify $F(\omega)$ and understand result

Example: $f_1(t) = 1/\tau$ if $(|t| < \tau/2)$

Then $F_1(\omega) = \operatorname{sinc}(\omega \tau/2)$

23

Multiply
$$F_1$$
 by F_2
 $F_2(\omega) = 1$ if $|\omega| < \omega_{\text{max}}$
 $F_2(\omega) = 0$ otherwise

Chops off high frequencies, as before

What is $f_2(t)$?

$$f_2(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F_2(\omega) e^{-i\omega t} d\omega$$

$$= \frac{1}{2\pi} \int_{-\omega_m}^{\omega_m} e^{-i\omega t} d\omega$$

$$= \frac{1}{\pi t} \sin(\omega_m t) = \frac{\omega_m}{\pi} \operatorname{sinc} \omega_m t$$

(Form of f and F interchangable)

So we get

$$f(t) = \int_{-\infty}^{\infty} f_1(T) f_2(t - T) dT$$

If ω_m is large then f_2 is sharp peak - only large for $|\omega_m(t-T)| < \pi$

So need T pretty close to t:

$$f(t) \approx f_1(t)$$

But edges of pulse "blurred" like sinc

25

Gives:

E. Correlation

Suppose
$$f(t) = \int_{-\infty}^{\infty} f_1^*(T) f_2(t+T) dT$$

Say f = correlation of f_1 and f_2

Fancy way to compare two functions
- we'll use later

Obtain
$$F(\omega) = F_1^*(\omega)F_2(\omega)$$

Similar to convolution result

27

F. Parseval's Theorem

If $F(\omega)$ is transform of f(t) then

$$\int_{-\infty}^{\infty} |f(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |F(\omega)|^2 d\omega$$

For wave, $\int |f(t)|^2 dt \propto$ total energy in wave Interpret $|F(\omega)|^2 d\omega \propto$ energy in frequency band $d\omega$

Can measure:

Send light pulse through dispersing prism separates colors $=\omega$ components

Intensity of each color $\propto |F(\omega)|^2$

List of transforms

$$f(t)$$
 $F(\omega)$ $\frac{1}{ au}$ $\left(|t| < \frac{ au}{2}\right)$ $\operatorname{sinc}\left(\frac{\omega au}{2}\right)$ $e^{-i\omega_0 t}$ $2\pi \delta(\omega - \omega_0)$ $\delta(t-t_0)$ $e^{i\omega t_0}$ $\frac{1}{ au\sqrt{\pi}}e^{-t^2/ au^2}$ $e^{-\omega^2 au^2/4}$

Use with linearity and scaling properties: gives most of what we need

29

Spatial transforms

If f(z) is function of spatial coordinate

$$f(z) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(k)e^{ikz}dk$$

$$F(k) = \int_{-\infty}^{\infty} f(z)e^{-ikz}dz$$

So (z,k) like (t,ω) : everything works the same

Question: My definition of $F(\omega)$ had $e^{i\omega t}$. Why did I change the sign for F(k)?

For 3D functions, need 3D transform:

$$f(\mathbf{r}) = \frac{1}{(2\pi)^3} \iiint F(\mathbf{k}) e^{i\mathbf{k}\cdot\mathbf{r}} d^3k$$

$$F(\mathbf{k}) = \iiint f(\mathbf{r})e^{-i\mathbf{k}\cdot\mathbf{r}}d^3r$$

integrals over all space

Same ideas, sometimes integrals are harder We'll see one example later

For instance:

 $|F(\mathbf{k})|^2$ = energy density at wave vector \mathbf{k}

31

What about space and time together?

Write

$$f(\mathbf{r},t) = \frac{1}{(2\pi)^4} \int F(\mathbf{k},\omega) e^{i(\mathbf{k}\cdot\mathbf{r}-\omega t)} d^3k \, d\omega$$

$$F(\mathbf{k}, \omega) = \int f(\mathbf{r}, t) e^{-i(\mathbf{k} \cdot \mathbf{r} - \omega t)} d^3 r dt$$

Works for any function f

Can write any function as sum of plane waves! as advertised in Lecture 1

What about waves?

Say electric field $E(\mathbf{r},t)$

Write transform as $\mathcal{E}(\mathbf{k},\omega)$

$$E(\mathbf{r},t) = \frac{1}{(2\pi)^4} \int \mathcal{E}(\mathbf{k},\omega) e^{i(\mathbf{k}\cdot\mathbf{r}-\omega t)} d^3k \, d\omega$$

But, if E is solution of wave equation, need

$$k^2 = \frac{n^2 \omega^2}{c^2}$$

Not all functions are waves

33

Then ω and ${\bf k}$ aren't independent

Really only three variables: use k then $\omega = \omega(\mathbf{k}) \equiv \omega_k$

Then if

$$\mathcal{E}(\mathbf{k}) = \int E(\mathbf{r}, 0)e^{-i\mathbf{k}\cdot\mathbf{r}}d^3r$$

get
$$E(\mathbf{r},t) = \frac{1}{(2\pi)^3} \int \mathcal{E}(\mathbf{k}) e^{i(\mathbf{k}\cdot\mathbf{r} - \omega_k t)} d^3k$$

Gives wave at all times in terms of $E(\mathbf{r}, t = 0)$

Question: What if E(t = 0) is zero everywhere, and at some later time I turn on a source?

Summary:

- Fourier transform lets you express functions as sum of harmonic functions
- Evaluate transform by doing integral
- Covered several important properties
- Can do transforms in space and/or time
- For waves, space and time dependence related

35