
Phys 531 Lecture 14 21 October 2004

Fourier Transform

Last time, looked at how waves add

Spatial variations: interference pattern

Time variations: beat note

Claimed that you could construct arbitrary pulse

by adding fields with different ω’s

Today, show how: Fourier transform
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Outline:

• Motivation

• Definition

• Transform properties

• Spatial transforms

Lots of math today

Next time:

- Apply Fourier methods to wave propagation

- Start working on diffraction
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Motivation

Lecture 1:

Claimed any wave = sum of plane waves

For now, show that:

Any function of time f(t)

= sum of harmonic functions e−iωt

More general: any function

More specific: single variable

imagine f(t) = E(r, t) at fixed r

Talk about full waves again at end
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Why should f(t) = sum of eiωt’s?

= sum of sines and cosines?

Make components add constructively where f large

destructively where f small

Example: add fn = cos [(1.2)nωt] for n = 1 to 9:
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Sum gives peak at t = 0:

More cosines → sharper peak, flatter background

If you can make sharp peaks:

any f(t) = sum of peaks at different t’s
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Fourier Transform (Hecht 7.3, 7.4, 11.1)

Most general sum = integral

Can write f(t) =
1

2π

∫ ∞

−∞
F (ω)e−iωtdω

F (ω) = coefficients of sum

1/2π = normalizing factor

Fine, but how to determine F (ω)?
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Basic Fourier trick:

multiply both sides by eiβt and integrate over t
∫ ∞

−∞
eiβtf(t)dt =

1

2π

∫ ∞

−∞

∫ ∞

−∞
eiβtF (ω)e−iωtdω dt

Change order of integrals on rhs:

=
1

2π

∫ ∞

−∞
F (ω)

(
∫ ∞

−∞
ei(β−ω)tdt

)

dω

=

∫ ∞

−∞
F (ω)δ(β − ω)dω

for

δ(ω) =
1

2π

∫ ∞

−∞
eiωtdt ≡ “delta function”
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Consider δ(ω) (Hecht 11.2.3)

If ω 6= 0, then eiωt oscillates +/-

So
∫

eiωtdt averages to zero:

Expect δ(ω) = 0 for ω 6= 0

But for ω = 0, eiωt = e0 = 1

So
∫ ∞

−∞
eiωtdt →

∫ ∞

−∞
dt = ∞

Like adding up infinite number of cosines:

get infinitely high, infinitely narrow peak
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Important property:
∫ ∞

−∞
δ(ω)dω =

1

2π

∫ ∞

−∞

∫ ∞

−∞
eiωtdt dω = 1

delta function is normalized

Derived in handout

Go back to
∫ ∞

−∞
eiβtf(t)dt =

∫ ∞

−∞
F (ω)δ(β − ω)dω

delta function peaked at ω = β, zero elsewhere
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At ω = β, have F (ω) = F (β)

So have
∫ ∞

−∞
eiβtf(t)dt = F (β)

∫ ∞

−∞
δ(β − ω)dω = F (β)

Usually write

F (ω) =

∫ ∞

−∞
f(t)eiωtdt

Call F = Fourier transform of f

Then f = inverse Fourier transform of F :

f(t) =
1

2π

∫ ∞

−∞
F (ω)e−iωtdω
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Other definitions possible:

F (ω) =
1√
2π

∫ ∞

−∞
f(t)e−iωtdt

f(t) =
1√
2π

∫ ∞

−∞
F (ω)eiωtdω

or F (ν) =

∫ ∞

−∞
f(t)ei2πνtdt

f(t) =

∫ ∞

−∞
F (ν)e−i2πνtdν

ν = ω/2π = frequency in Hz

Our version: all ω integrals have 1/2π factor
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Do an example:

Say f(t) = 1/τ if −τ
2 < t < τ

2

= 0 otherwise

f

t0

τ1/τ

Normalized to 1
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Calculate F (ω):

F (ω) =

∫ ∞

−∞
f(t)eiωtdt

=
1

τ

∫ τ/2

−τ/2
eiωtdt

=
1

iωτ

(

eiωτ
2 − e−iωτ

2

)

=
2

ωτ
sin

(

ωτ

2

)
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Define sin(θ)/θ ≡ sinc θ

Have sinc(0) = 1 (peak value)

sinc(nπ) = 0 (integer n 6= 0)

Peak width ∆θ ≈ 2π
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So F (ω) = sinc
(

ωτ
2

)

Peaked at ω = 0

Width ∆ω = π/τ

General feature:

width ∆ω of F (ω) larger

when width ∆t of f(t) is smaller

Can show ∆ω∆t ≥ 1/2

(for particular definition of widths)
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Need high frequencies if f changes quickly

always expect ωmax ≈ 1/δt

δt = time scale for f(t) to change

For rectangular pulse, δt → 0

See F (ω) decreases slowly ∝ ω−1 for ω → ∞
no definite ωmax

Question: If we set F(ω) = 0 for |ω| greater than some

ωmax, how would f(t) change?
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Properties of Fourier Transform
(Hecht 11.2, handout)

A. Even for real f(t), F (ω) can be complex

F (ω) =
∫

f(t)eiωtdt

F ∗(ω) =

∫

f(t)e−iωtdt

So F − F ∗ =

∫

f(t)
(

eiωt − e−iωt
)

dt

= 2i
∫

f(t) sin(ωt)dt

= 0 only if f(t) = f(−t)
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Why is F complex?

Because we defined F with complex exponentials

Also explains why we get ω < 0 terms:

in complex space ω < 0 and ω > 0 are different

If f real, then F (−ω) = F ∗(ω)

all information in ω > 0 terms

Fits well with complex representation of fields:

we’re just suppressing ω < 0 components
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B. Linearity

If f(t) = af1(t) + bf2(t) then

F (ω) = aF1(ω) + bF2(ω)

where F1 = transform of f1
F2 = transform of f2

Very useful:

Often complicated f = sum of simple f ’s
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Example: = +

Say pulses width T , height = A

Gap width = T

Remember sinc(ωτ/2) =

transform of pulse width τ , height 1/τ

First pulse width τ = 3T , second pulse τ = T

Adjust amplitudes of F accordingly

Then F (ω) = 3AT sinc

(

3ωT

2

)

− AT sinc

(

ωT

2

)

20



C. Translation Properties

If f(t) = g(t + τ) then

F (ω) = e−iωτG(ω)

where G = transform of g

If f(t) = e−iω0tg(t) then

F (ω) = G(ω − ω0)

Also useful for obtaining new transforms

21

Example: pulsed harmonic signal

f = Ae−iω0t for |t| < τ/2
= 0 otherwise

Then F (ω) = Aτ sinc

[

(ω − ω0)τ

2

]

Peak in ω space centered at ω0

Question: What would the transform look like if

f = cos(ω0t) for |t| < τ/2 and f = 0 otherwise?

22



D. Convolution

If F (ω) = F1(ω)F2(ω), then

f(t) =

∫ ∞

−∞
f1(T )f2(t − T )dT

where f1, f2 = inverse transforms of F1, F2

Say that f = convolution of f1 and f2

Lets you modify F (ω) and understand result

Example: f1(t) = 1/τ if (|t| < τ/2)

Then F1(ω) = sinc (ωτ/2)
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Multiply F1 by F2

F2(ω) = 1 if |ω| < ωmax

F2(ω) = 0 otherwise

Chops off high frequencies, as before

What is f2(t)?

f2(t) =
1

2π

∫ ∞

−∞
F2(ω)e−iωtdω

=
1

2π

∫ ωm

−ωm

e−iωtdω

=
1

πt
sin(ωmt) =

ωm

π
sincωmt

(Form of f and F interchangable)
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So we get

f(t) =

∫ ∞

−∞
f1(T )f2(t − T )dT

If ωm is large then f2 is sharp peak

- only large for |ωm(t − T )| < π

So need T pretty close to t:

f(t) ≈ f1(t)

But edges of pulse “blurred” like sinc
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Gives:
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E. Correlation

Suppose f(t) =

∫ ∞

−∞
f∗
1(T )f2(t + T )dT

Say f = correlation of f1 and f2

Fancy way to compare two functions

- we’ll use later

Obtain F (ω) = F ∗
1(ω)F2(ω)

Similar to convolution result
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F. Parseval’s Theorem

If F (ω) is transform of f(t) then
∫ ∞

−∞
|f(t)|2dt =

1

2π

∫ ∞

−∞
|F (ω)|2dω

For wave,
∫ |f(t)|2dt ∝ total energy in wave

Interpret |F (ω)|2dω ∝ energy in frequency band dω

Can measure:

Send light pulse through dispersing prism

separates colors = ω components

Intensity of each color ∝ |F (ω)|2
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List of transforms

f(t) F (ω)

1
τ

(

|t| < τ
2

)

sinc
(

ωτ
2

)

e−iω0t 2πδ(ω − ω0)

δ(t − t0) eiωt0

1
τ
√

π
e−t2/τ2

e−ω2τ2/4

Use with linearity and scaling properties:

gives most of what we need

29

Spatial transforms

If f(z) is function of spatial coordinate

f(z) =
1

2π

∫ ∞

−∞
F (k)eikzdk

F (k) =
∫ ∞

−∞
f(z)e−ikzdz

So (z, k) like (t, ω): everything works the same

Question: My definition of F(ω) had eiωt. Why did I change

the sign for F(k)?
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For 3D functions, need 3D transform:

f(r) =
1

(2π)3

∫∫∫

F (k)eik·rd3k

F (k) =

∫∫∫

f(r)e−ik·rd3r

integrals over all space

Same ideas, sometimes integrals are harder

We’ll see one example later

For instance:

|F (k)|2 = energy density at wave vector k
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What about space and time together?

Write

f(r, t) =
1

(2π)4

∫

F (k, ω)ei(k·r−ωt)d3k dω

F (k, ω) =

∫

f(r, t)e−i(k·r−ωt)d3r dt

Works for any function f

Can write any function as sum of plane waves!

as advertised in Lecture 1
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What about waves?

Say electric field E(r, t)

Write transform as E(k, ω)

E(r, t) =
1

(2π)4

∫

E(k, ω)ei(k·r−ωt)d3k dω

But, if E is solution of wave equation, need

k2 =
n2ω2

c2

Not all functions are waves
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Then ω and k aren’t independent

Really only three variables: use k

then ω = ω(k) ≡ ωk

Then if

E(k) =

∫

E(r,0)e−ik·rd3r

get E(r, t) =
1

(2π)3

∫

E(k)ei(k·r−ωkt)d3k

Gives wave at all times in terms of E(r, t = 0)

Question: What if E(t = 0) is zero everywhere, and at

some later time I turn on a source?
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Summary:

• Fourier transform lets you express func-

tions as sum of harmonic functions

• Evaluate transform by doing integral

• Covered several important properties

• Can do transforms in space and/or time

• For waves, space and time dependence

related
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