Phys $531 \quad$ Lecture $15 \quad 26$ October 2004
Fourier Approach to Wave Propagation
Last time, reviewed Fourier transform
Write any function of space/time $=$
sum of harmonic functions $e^{i(\mathbf{k} \cdot \mathbf{r}-\omega t)}$
Actual waves:
harmonic functions restricted $k^{2}=n^{2} \omega^{2} / c^{2}$

Today, apply Fourier to wave propagtion
Start to study diffraction

Outline:

- Diffraction
- Fourier approach
- Transfer function
- Fresnel approximation
- Gaussian example

Note: we won't be following book very well

- Hecht Ch. 10 takes different approach
- Ch. 11: Fourier approach, based on Ch. 10

Next time, continue development

Diffraction

Previously said ray optics fails

- small feature sizes a
- Iong propagation distances d

Need $d \ll a^{2} / \lambda$

Otherwise see diffraction
light spreads out
Demo!

Want to understand diffraction and calculate effects

Note: already have one way to understand:
scattering picture
Recall HW 2:

Plane wave incident on sphere diameter a

Ray optics:
Transmitted light has shadow diameter a Propagates indefinitely
Wrong!

Scattering picture:
Shadow due to forward scattered field
In shadow, $E_{\text {tot }}=E_{\text {inc }}+E_{\text {scat }} \approx 0$
To sides, $E_{\text {scat }}$ fields cancel out

But forward scattering not perfectly forward at angle $\theta \sim \lambda / a, E_{\text {scat }}$ significant

At small angle, $E_{\text {scat }}$ from all atoms \approx in phase

Similar to two slit interference

Get large peak when fields from slits in phase

7

Diffraction in scattering picture:
$E_{\text {scat }}$ fields don't cancel perfectly for finite object

General prediction:
Diffraction angle $\theta \approx \lambda / a$

Valid, but hard to calculate more precisely Come back to idea later

Fourier Treatment

Use math
Set up problem:
Suppose monochromatic field, frequency ω propagating towards $+z$ (perhaps at angle)

Specify $E(\mathbf{r}, t)$ in plane $z=0$
(= plane of slits, aperture)
Ask: What is $E(\mathbf{r}, t)$ for $z>0$?

Don't worry about 3D objects like sphere Sphere \approx disk

Monochromatic: write $E(\mathbf{r}, t)=E(\mathbf{r}) e^{-i \omega t}$ just consider $E(\mathbf{r})$

Field known at $z=0$:
Write $E(x, y, z=0)=A(x, y)$
Call $A(x, y)=$ aperture function
Usually look at diffraction from aperture
$A(x, y)=0$ for points outside aperture $A(x, y)=E(x, y, 0)$ for points inside aperture
(Stop using A for amplitude)

Example:
Plane wave $E_{\mathrm{inc}}=E_{0} e^{i[k(z \cos \theta+x \sin \theta)-\omega t]}$
travelling at angle θ to z-axis
Incident on square aperture side a, centered at $x=x_{0}, y=y_{0}$
Then

$$
A(x, y)= \begin{cases}E_{0} e^{i k x \sin \theta} & \left(\left|x-x_{0}\right|,\left|y-y_{0}\right|<a / 2\right) \\ 0 & \text { else }\end{cases}
$$

Think of $A(x, y)$ as initial condition want to solve for $E(x, y, z)$

Apply Fourier ideas

First thought:

$$
E(x, y, z)=\frac{1}{(2 \pi)^{3}} \iiint \mathcal{E}(\mathbf{k}) e^{i \mathbf{k} \cdot \mathbf{r}} d^{3} k
$$

If we knew $\mathcal{E}(\mathbf{k})$, problem solved
Do have

$$
A(x, y)=\frac{1}{(2 \pi)^{3}} \iiint \mathcal{E}(\mathbf{k}) e^{i\left(k_{x} x+k_{y} y\right)} d^{3} k
$$

Can we invert to get $\mathcal{E}(\mathbf{k})$ from $A(x, y)$?
No: $\mathcal{E}(\mathbf{k})=\iiint E(x, y, z) e^{i\left(k_{x} x+k_{y} y+k_{z} z\right)} d x d y d z$

Second thought:
Have $A(x, y)=\frac{1}{(2 \pi)^{2}} \iint \mathcal{A}\left(k_{x}, k_{y}\right) e^{i\left(k_{x} x+k_{y} y\right)} d k_{x} d k_{y}$
with $\mathcal{A}\left(k_{x}, k_{y}\right)=\iint A(x, y) e^{i\left(k_{x} x+k_{y} y\right)} d x d y$
No problem getting $\mathcal{A}\left(k_{x}, k_{y}\right)$

Can we get $E(x, y, z)$ from \mathcal{A} ?
Yes!

Develop with example:
Suppose $A(x, y)=E_{0} e^{i(\beta x)}$
harmonic function
What function $E(x, y, z)$ would give us this A ?
Already know answer:

$$
E(\mathbf{r})=E_{0} e^{i\left(\beta x+k_{z} z\right)} \text { for some } k_{z}
$$

Plane wave

In this case, easy to guess form of solution

What is k_{z} ?
Have $k^{2}=k_{x}^{2}+k_{y}^{2}+k_{z}^{2}=n^{2} \omega^{2} / c^{2}$
ω, n given
For our function $k_{x}=\beta$ and $k_{y}=0$, so

$$
\begin{aligned}
& k_{z}^{2}=k^{2}-\beta^{2} \\
& k_{z}=\sqrt{k^{2}-\beta^{2}}
\end{aligned}
$$

Full solution is

$$
E(\mathbf{r})=E_{0} e^{i\left(\beta x+z \sqrt{k^{2}-\beta^{2}}\right)}
$$

Question: Could I use $k_{z}=-\sqrt{k^{2}-\beta^{2}}$ instead?

In general, if $A(x, y)=E_{0} e^{i\left(k_{x} x+k_{y} y\right)}$, get solution

$$
E(\mathbf{r})=E_{0} e^{i\left(k_{x} x+k_{y} y+\kappa z\right)}
$$

for $\kappa \equiv \sqrt{k^{2}-k_{x}^{2}-k_{y}^{2}}$

Solution to problem for particular form $A(x, y)$

Important to understand this!

Question: If $A(x, y)=E_{0}$, what is $E(x, y, z)$?

With Fourier transform,

$$
A(x, y)=\text { sum of harmonic funcs }
$$

So solution $E(\mathbf{r})=$ sum of plane waves
with $\kappa=\sqrt{k^{2}-k_{x}^{2}-k_{y}^{2}}$

If $A(x, y)=\frac{1}{(2 \pi)^{2}} \iint \mathcal{A}\left(k_{x}, k_{y}\right) e^{i\left(k_{x} x+k_{y} y\right)} d k_{x} d k_{y}$
then $E(\mathbf{r})=\frac{1}{(2 \pi)^{2}} \iint \mathcal{A}\left(k_{x}, k_{y}\right) e^{i\left(k_{x} x+k_{y} y+\kappa z\right)} d k_{x} d k_{y}$

$$
17
$$

Simple example: $A(x, y)=E_{0} \cos (\beta x)$
One solution:

$$
\begin{aligned}
A(x, y) & =\frac{E_{0}}{2}\left(e^{i \beta x}+e^{-i \beta x}\right) \\
& =\text { sum of harmonic funcs }
\end{aligned}
$$

Then

$$
\begin{aligned}
E(\mathbf{r}) & =\frac{E_{0}}{2}\left(e^{i\left(\beta x+z \sqrt{k^{2}-\beta^{2}}\right)}+e^{i\left(-\beta x+z \sqrt{k^{2}-\beta^{2}}\right.}\right) \\
& =E_{0} e^{i z \sqrt{k^{2}-\beta^{2}}} \cos (\beta x)
\end{aligned}
$$

Another solution:
Recall transform of $e^{i \beta x}$ is $2 \pi \delta\left(k_{x}-\beta\right)$
So

$$
\mathcal{A}\left(k_{x}, k_{y}\right)=2 \pi^{2} E_{0}\left[\delta\left(k_{x}-\beta\right)+\delta\left(k_{x}+\beta\right)\right] \delta\left(k_{y}\right)
$$

So

$$
\begin{aligned}
& \qquad \begin{aligned}
E(\mathbf{r}) & =\frac{1}{(2 \pi)^{2}} \iint \mathcal{A}\left(k_{x}, k_{y}\right) e^{i\left(k_{x} x+k_{y} y+\kappa z\right)} d k_{x} d k_{y} \\
& =\frac{1}{(2 \pi)^{2}}\left\{2 \pi^{2} E_{0}\left[e^{i(\beta x+\kappa z)}+e^{i(-\beta x-\kappa z)}\right]\right\} \\
& =E_{0} e^{i \kappa z} \cos (\beta x)
\end{aligned} \\
& \text { for } \kappa=\sqrt{k^{2}-\beta^{2}}
\end{aligned}
$$

$$
19
$$

Either method fine

Note, solution is physically interesting:
Two plane waves, angle $\theta=\tan ^{-1}(\beta / \kappa)$

Implement with glass plate, sinusoidal markings simple diffraction grating

Another example:
Plane wave normally incident on square hole

$$
A(x, y)= \begin{cases}1 & (|x|,|y|<a / 2) \\ 0 & \text { (else) }\end{cases}
$$

Then

$$
\begin{aligned}
\mathcal{A}\left(k_{x}, k_{y}\right) & =\iint A(x, y) e^{i\left(k_{x} x+k_{y} y\right)} d x d y \\
& =\left(\int_{-a / 2}^{a / 2} e^{i k_{x} x} d x\right)\left(\int_{-a / 2}^{a / 2} e^{i k_{y} y} d y\right) \\
& =a^{2} \operatorname{sinc}\left(\frac{k_{x} a}{2}\right) \operatorname{sinc}\left(\frac{k_{y} a}{2}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
E(\mathbf{r})=\frac{a^{2}}{(2 \pi)^{2}} \iint & \operatorname{sinc}\left(\frac{k_{x} a}{2}\right) \operatorname{sinc}\left(\frac{k_{y} a}{2}\right) \\
& \times e^{i\left(k_{x} x+k_{y} y+z \sqrt{k^{2}-k_{x}^{2}-k_{y}^{2}}\right)} d k_{x} d k_{y}
\end{aligned}
$$

Can't do this integral analytically

- square root in exponent is hard!

Need to introduce some approximations

First, study what we'll approximate

Transfer Function

General result

$$
E(\mathbf{r})=\frac{1}{(2 \pi)^{2}} \iint \mathcal{A}\left(k_{x}, k_{y}\right) e^{i\left(k_{x} x+k_{y} y+\kappa z\right)} d k_{x} d k_{y}
$$

Can write as
$E(\mathbf{r})=\frac{1}{(2 \pi)^{2}} \iint \mathcal{A}\left(k_{x}, k_{y}\right) \mathcal{H}\left(k_{x}, k_{y}\right) e^{i\left(k_{x} x+k_{y} y\right)} d k_{x} d k_{y}$
for $\mathcal{H}\left(k_{x}, k_{y}\right)=e^{i z \sqrt{k^{2}-k_{x}^{2}-k_{y}^{2}}}$
Call $\mathcal{H}=$ transfer function for free space

Note \mathcal{H} depends on $z=$ propagation distance
More general:

$$
\mathcal{H}_{d}\left(k_{x}, k_{y}\right)=e^{i d \sqrt{k^{2}-k_{x}^{2}-k_{y}^{2}}}
$$

propagates field from z_{0} to $z_{0}+d$

Call $E\left(x, y, z_{0}\right)=$ input, $E\left(x, y, z_{0}+d\right)=$ ouput Linear system: output depends linearly on input

Transfer function $=$ linear coefficients but in Fourier space
$\mathcal{H}_{d}=e^{i d \sqrt{k^{2}-k_{x}^{2}+k_{y}^{2}}}$
For $k_{x}^{2}+k_{y}^{2}<k^{2}$, have $|\mathcal{H}|=1$

$$
k_{z} \text { is real }
$$

But for $k_{x}^{2}+k_{y}^{2}>k^{2}$, have

$$
|\mathcal{H}|=e^{-d \sqrt{k_{x}^{2}+k_{y}^{2}-k^{2}}}<1
$$

k_{z} is imaginary!

Plot magnitude and phase

Is it possible to have $k_{x}^{2}+k_{y}^{2}>k^{2}$?
Yes: can make arbitrary apertures
If feature size $\lesssim \lambda$, will have

$$
\mathcal{A}\left(k_{x}, k_{y}\right) \neq 0 \text { for large } k_{x}, k_{y}
$$

Example: square hole with $a=10 \mathrm{~nm}$

For large $k_{x}, k_{y}, \mathcal{H}$ decays with d $\Rightarrow E(\mathrm{r})$ decays with d

Have seen before: evanescent wave

For aperture with small hole, field doesn't propagate away

Can't "fit" wave through hole smaller than $\lambda / 2 \pi$
Limits imaging resolution of microscope: images of small features don't propagate

But, can measure evanescent wave itself: called near field microscopy

Place detector very close to surface resolution \approx surface distance/ 2π

Fresnel Approximation

Note, large $k_{x}, k_{y} \Rightarrow$ large propagation angle θ
$\sin \theta=\frac{\sqrt{k_{x}^{2}+k_{y}^{2}}}{k}$
But usually interested in small $\theta \approx$ paraxial
Evanescent wave behavior irrelevant

Suggests approximation

$$
\sqrt{k^{2}-k_{x}^{2}-k_{y}^{2}} \approx k-\frac{k_{x}^{2}+k_{y}^{2}}{2 k}
$$

so $\mathcal{H}_{d} \approx e^{i k d} e^{-i d\left(k_{x}^{2}+k_{y}^{2}\right) / 2 k}$
29

Called Fresnel approximation
Gives diffracted field $E(x, y, z)=$

$$
\frac{e^{i k z}}{(2 \pi)^{2}} \iint \mathcal{A}\left(k_{x}, k_{y}\right) e^{i\left(k_{x} x+k_{y} y\right)} e^{-i z\left(k_{x}^{2}+k_{y}^{2}\right) / 2 k} d k_{x} d k_{y}
$$

Integrals more manageable
Still hard to get analytic result
but numerical integration is straightforward

Valid when next term in expansion is small
Next term in Taylor series of $d \sqrt{k^{2}-k_{x}^{2}-k_{y}^{2}}$

$$
=\frac{d\left(k_{x}^{2}+k_{y}^{2}\right)}{8 k^{3}}
$$

For propagation angle

$$
\theta \approx \frac{\sqrt{k_{x}^{2}+k_{y}^{2}}}{k}, \text { need } k d \theta^{4} \ll 1
$$

More physics of Fresnel approxmation next class
For now:
one example where analytic solution possible

Gaussian beam

Suppose $A(x, y)=E_{0} e^{-\left(x^{2}+y^{2}\right) / w_{0}^{2}}$
Gaussian function, width w_{0}
Make with glass filter:

- transparent in center
- smoothly becomes opaque at edge

Turns out, this field produced naturally by laser
\rightarrow practically important
Calculate $E(x, y, z)$

Need transform $\mathcal{A}\left(k_{x}, k_{y}\right)$
Transform of Gaussian $e^{-x^{2} / w_{0}^{2}}$ is $w_{0} \sqrt{\pi} e^{-w_{0}^{2} k_{x}^{2} / 4}$
So $\mathcal{A}\left(k_{x}, k_{y}\right)=E_{0} \pi w_{0}^{2} e^{-w_{0}^{2}\left(k_{x}^{2}+k_{y}^{2}\right) / 4}$
With Fresnel approximation

$$
\begin{aligned}
& E(\mathbf{r})=\frac{e^{i k z}}{(2 \pi)^{2}} E_{0} \pi w_{0}^{2} \\
& \quad \times \iint e^{-w_{0}^{2}\left(k_{x}^{2}+k_{y}^{2}\right) / 4} e^{-i z\left(k_{x}^{2}+k_{y}^{2}\right) / 2 k} e^{i\left(k_{x} x+k_{y} y\right)} d k_{x} d k_{y}
\end{aligned}
$$

Define $q^{2}=w_{0}^{2}+i 2 z / k$

Then

$$
\begin{aligned}
E(\mathbf{r})= & \frac{e^{i k z}}{(2 \pi)^{2}} E_{0} \pi w_{0}^{2} \\
& \times \iint e^{-q^{2}\left(k_{x}^{2}+k_{y}^{2}\right) / 4} e^{i\left(k_{x} x+k_{y} y\right)} d k_{x} d k_{y} \\
= & e^{i k z} E_{0} \pi w_{0}^{2} \\
& \times \frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-q^{2} k_{x}^{2} / 4} e^{i k_{x} x} d k_{x} \\
& \times \frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-q^{2} k_{y}^{2} / 4} e^{i k_{y} y} d k_{y}
\end{aligned}
$$

Inverse transforms of Gaussians

So

$$
\begin{aligned}
E(\mathbf{r}) & =E_{0} e^{i k z} \pi w_{0}^{2}\left(\frac{1}{q \sqrt{\pi}} e^{-x^{2} / q^{2}}\right)\left(\frac{1}{q \sqrt{\pi}} e^{-y^{2} / q^{2}}\right) \\
& =E_{0} e^{i k z} \frac{w_{0}^{2}}{q^{2}} e^{-\left(x^{2}+y^{2}\right) / q^{2}}
\end{aligned}
$$

Solved!
Field remains Gaussian
But complicated since q is complex

Calculate $|E(\mathrm{r})|^{2}$
Use $\frac{1}{q^{2}}=\frac{1}{w_{0}^{2}+i 2 z / k}$

$$
=\frac{w_{0}^{2}-i 2 z / k}{w_{0}^{4}+4 z^{2} / k^{2}}
$$

$$
\equiv \frac{1}{w^{2}}\left(1-i \frac{2 z}{k w_{0}^{2}}\right)
$$

for

$$
w^{2}=w_{0}^{2}+\frac{4 z^{2}}{k^{2} w_{0}^{2}}=\frac{|q|^{4}}{w_{0}^{2}}
$$

Then

$$
\begin{aligned}
|E(\mathbf{r})|^{2} & =\left|E_{0}\right|^{2} \frac{w_{0}^{4}}{|q|^{4}} e^{-2\left(x^{2}+y^{2}\right) / w^{2}} \\
& =\left|E_{0}\right|^{2} \frac{w_{0}^{2}}{w^{2}} e^{-2\left(x^{2}+y^{2}\right) / w^{2}}
\end{aligned}
$$

Irradiance remains Gaussian, but size expands

$$
w(z)=\sqrt{w_{0}^{2}+\frac{\lambda^{2} z^{2}}{\pi^{2} w_{0}^{2}}} \rightarrow \frac{\lambda z}{\pi w_{0}}
$$

Divergence angle $\theta=\lambda / \pi w_{0} \approx \lambda / a$ feature size a

For large w_{0}, divergence is slow
Light propagates \approx uniformly
Call solution Gaussian beam always Gaussian profile

More on Gaussian beams later in course

Summary:

- Diffraction due to wave nature of light
- Can use Fourier analysis to calculate
- $E(x, y, 0) \rightarrow \mathcal{A}\left(k_{x}, k_{y}\right)$
- know $k_{z}=\left(k^{2}-k_{x}^{2}-k_{y}^{2}\right)^{1 / 2}$
- Transfer function: $E(z) \rightarrow E(z+d)$

$$
\begin{aligned}
& \mathcal{A}_{d}=\mathcal{H}_{d} \mathcal{A} \\
& \mathcal{H}_{d}=e^{i k_{z} d}
\end{aligned}
$$

- Fresnel approximation: expansion of \mathcal{H}_{d}
- Apply to Gaussian beam \approx laser beam

