# Phys 531 

Last time, started looking at diffraction
= spreading of light after aperture
Applied Fourier techniques to calculate

Continue discussion today
Focus on approximations and interpretation

Outline:

- Review
- Connect to general systems methods
- Propagation as convolution
- Huygens-Fresnel theory
- Fraunhofer diffraction

Next time: applications of diffraction

## Review

Problem:
Given $E=A(x, y)$ in plane $z=0$
Want to calculate $E(x, y, z)$

Key insight:
If $A(x, y)$ is a harmonic function, know how to solve

Say $A(x, y)=E_{0} e^{i\left(k_{x} x+k_{y} y\right)}$
Then plane wave $E(\mathbf{r})=E_{0} e^{i\left(k_{x} x+k_{y} y+k_{z} z\right)}$
satisfies $E(x, y, 0)=A(x, y)$ for any $k_{z}$

Want $E(\mathbf{r})=$ solution of wave equation
$\Rightarrow$ require $k^{2}=k_{x}^{2}+k_{y}^{2}+k_{z}^{2}=n^{2} \omega^{2} / c^{2}$ (assume $n$ and $\omega$ known)

So need $k_{z}= \pm \kappa= \pm \sqrt{k^{2}-k_{x}^{2}-k_{y}^{2}}$ + for wave travelling toward positive $z$

So we can solve problem for harmonic $A(x, y)$

Wave equation is linear:
If $A(x, y)=$ sum of harmonic funcs
Then solution $=$ sum of plane waves
Fourier transform:
Express any $A$ as sum of harmonic funcs:

$$
A(x, y)=\frac{1}{(2 \pi)^{2}} \iint \mathcal{A}\left(k_{x}, k_{y}\right) e^{i\left(k_{x} x+k_{y} y\right)} d k_{x} d k_{y}
$$

Each term $e^{i\left(k_{x} x+k_{y} y\right)} \rightarrow e^{i\left(k_{x} x+k_{y} y+\kappa z\right)}$

So general solution is
$E(x, y, z)=\frac{1}{(2 \pi)^{2}} \iint \mathcal{A}\left(k_{x}, k_{y}\right) e^{i\left(k_{x} x+k_{y} y+\kappa z\right)} d k_{x} d k_{y}$
with $\kappa=\sqrt{k^{2}-k_{x}^{2}-k_{y}^{2}}$

Or write as
$E(x, y, z)=\frac{1}{(2 \pi)^{2}} \iint \mathcal{A}\left(k_{x}, k_{y}\right) \mathcal{H}\left(k_{x}, k_{y}\right) e^{i\left(k_{x} x+k_{y} y\right)} d k_{x} d k_{y}$
with $\mathcal{H}=e^{i z \sqrt{k^{2}-k_{x}^{2}-k_{y}^{2}}} \equiv$ transfer function

More on transfer functions:
Think of propagation as "system"

$$
\begin{aligned}
& A(x, y)=\text { input to system } \\
& E(x, y, z)=\text { output }
\end{aligned}
$$

Or more generally:

$$
\begin{aligned}
& E\left(x, y, z_{0}\right) \equiv A(x, y)=\text { input } \\
& E\left(x, y, z_{0}+d\right) \equiv A_{d}(x, y)=\text { output }
\end{aligned}
$$

## Transfer function relates output to input

General definition:

$$
\mathcal{H}_{d}\left(k_{x}, k_{y}\right)=\frac{\text { output }}{\text { input }}=\frac{A_{d}(x, y)}{A(x, y)}
$$

for particular case when input is harmonic

$$
A(x, y)=E_{0} e^{i\left(k_{x} x+k_{y} y\right)}
$$

Here $A_{d}=E_{0} e^{i\left(k_{x} x+k_{y} y+\kappa d\right)}$ so $\mathcal{H}_{d}=e^{i \kappa d}$

Question: In the definition above, it looks like $\mathcal{H}$ should depend on $x$ and $y$. Why doesn't it?

Transfer function idea applies to any linear system Harmonic input always easy to solve

Example: mass on spring input $=$ force on mass $F(t)$ output $=$ steady state position $x(t)$


Or (voltage, current) in RLC circuit
Or (drive, response) of NMR sample

Simple harmonic oscillator:

$$
\ddot{x}+\gamma \dot{x}+\omega_{0}^{2} x=f(t)
$$

where $\omega_{0}=$ natural oscillation frequency
$\gamma=$ damping coefficient
$f(t)=F(t) / m$

Solve for arbitrary $f(t)$
Actually kind of hard

But solving for $f=f_{0} e^{-i \omega t}$ is easy

Try $x=x_{0} e^{-i \omega t}$ :

$$
\text { Get }-\omega^{2} x_{0}-i \gamma \omega x_{0}+\omega_{0}^{2} x_{0}=f_{0}
$$

So $x(t)=\frac{1}{\omega_{0}^{2}-i \gamma \omega-\omega^{2}} f(t)$

Then transfer function is

$$
\mathcal{H}(\omega)=\frac{x(t)}{f(t)}=\frac{1}{\omega_{0}^{2}-i \gamma \omega-\omega^{2}}
$$

For general $f(t)$, have

$$
f(t)=\frac{1}{2 \pi} \int \mathcal{F}(\omega) e^{-i \omega t} d \omega
$$

So general solution is

$$
x(t)=\frac{1}{2 \pi} \int \mathcal{F}(\omega) \mathcal{H}(\omega) e^{-i \omega t} d \omega
$$

Integral might be hard to do analytically, but problem is solved

Same basic method as in optics

## Back to optics...

Use approximations to simplify solution
Start with Fresnel approximation:

$$
\kappa=\sqrt{k^{2}-k_{x}^{2}-k_{y}^{2}} \approx k-\frac{k_{x}^{2}+k_{y}^{2}}{2 k}
$$

Valid for $k_{x}, k_{y} \ll k$ : small propagation angles $\theta$

Then $\mathcal{H}_{d}\left(k_{x}, k_{y}\right) \approx e^{i k d} e^{-i d\left(k_{x}^{2}+k_{y}^{2}\right) / 2 k}$
Used to solve Gaussian beam problem

## Convolutions

Another way to look at solution
Have

$$
A_{d}(x, y)=\frac{1}{(2 \pi)^{2}} \iint \mathcal{A}\left(k_{x}, k_{y}\right) \mathcal{H}_{d}\left(k_{x}, k_{y}\right) e^{i\left(k_{x} x+k_{y} y\right)} d k_{x} d k_{y}
$$

Fourier transform says

$$
A_{d}(x, y)=\frac{1}{(2 \pi)^{2}} \iint \mathcal{A}_{d}\left(k_{x}, k_{y}\right) e^{i\left(k_{x} x+k_{y} y\right)} d k_{x} d k_{y}
$$

So $\mathcal{A}_{d}=\mathcal{A H}_{d}$

Recall convolution theorem:
If $F(\omega)=F_{1}(\omega) F_{2}(\omega)$ then

$$
f(t)=\int_{-\infty}^{\infty} f_{1}(T) f_{2}(t-T) d T
$$

We have 2D version:

$$
\mathcal{A}_{d}\left(k_{x}, k_{y}\right)=\mathcal{A}\left(k_{x}, k_{y}\right) \mathcal{H}\left(k_{x}, k_{y}\right)
$$

so $\quad A_{d}(x, y)=\iint A(X, Y) h_{d}(x-X, y-Y) d X d Y$
where $h_{d}(x, y)=$ inverse transform of $\mathcal{H}_{d}$

Let's work out $h_{d}$ in Fresnel approximation

Have $h_{d}(x, y)=$

$$
\begin{aligned}
& \frac{1}{(2 \pi)^{2}} \iint e^{i k d} e^{-i d\left(k_{x}^{2}+k_{y}^{2}\right) / 2 k} e^{i\left(k_{x} x+k_{y} y\right)} d k_{x} d k_{y} \\
& =e^{i k d}\left(\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-i d k_{x}^{2} / 2 k} e^{i k_{x} x} d k_{x}\right) \\
& \quad \times\left(\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-i d k_{y}^{2} / 2 k} e^{i k_{y} y} d k_{y}\right)
\end{aligned}
$$

Gaussian transforms

$$
e^{-k_{x}^{2} q^{2} / 4} \rightarrow \frac{1}{q \sqrt{\pi}} e^{-x^{2} / q^{2}}
$$

Here $q^{2}=2 i d / k$

So $h(x, y)=\frac{e^{i k d}}{\pi q^{2}} e^{-\left(x^{2}+y^{2}\right) / q^{2}}$

$$
=\frac{k e^{i k d}}{2 i \pi d} e^{-k\left(x^{2}+y^{2}\right) /(2 i d)}
$$

$$
h(x, y)=-i \frac{e^{i k d}}{\lambda d} e^{i k\left(x^{2}+y^{2}\right) / 2 d}
$$

where $\lambda=2 \pi / k$

Question: Do the units $\left(\mathrm{m}^{-2}\right)$ for $h$ make sense?

Interesting fact:
Write $h_{d}$ as $h_{d}(x, y)=-\frac{i}{\lambda d} e^{i k\left(d+\frac{x^{2}+y^{2}}{2 d}\right)}$
Note that $d+\frac{x^{2}+y^{2}}{2 d} \approx \sqrt{x^{2}+y^{2}+d^{2}}$ for $d \gg x, y$

But $d=z-z_{0}$, so $h_{d}(x, y)=-\frac{i}{\lambda} \frac{e^{i k r}}{r}$
for $r=\sqrt{x^{2}+y^{2}+\left(z-z_{0}\right)^{2}}$
and $d \approx r$ in denominator

So $h_{d}(x, y) \approx$ spherical wave centered at $\left(0,0, z_{0}\right)$

Look again at expression for fields:

$$
A_{d}(x, y)=\iint A(X, Y) h_{d}(x-X, y-Y) d X d Y
$$

Set $z_{0}=0$ for simplicity
Then $A_{d}(x, y)=E(x, y, z)$ and $A(x, y)=E(x, y, 0)$ So

$$
E(x, y, z)=\iint E(X, Y, 0) h_{z}(x-X, y-Y) d X d Y
$$

$$
E(x, y, z)=\iint E(X, Y, 0) h_{z}(x-X, y-Y) d X d Y
$$

or $E(\mathbf{r})=-\frac{i}{\lambda} \iint E(\mathbf{R}) \frac{e^{i k|\mathbf{R}-\mathbf{r}|}}{|\mathbf{R}-\mathbf{r}|} d X d Y$
for $\mathbf{r}=(x, y, z), \mathbf{R}=(X, Y, 0)$

Interpretation:

- Each point $\mathbf{R}$ in input plane acts as source of spherical wave amplitude $\propto E(\mathbf{R})$
- Total field at r in output plane $=$ sum of spherical waves from different R's

Fresnel-Huygens picture (Hecht 4.4.2)
Each point on wavefront $=$ source of new waves

- call new waves "Huygens's wavelets"

Plane wave:


Sphere wave:

Completely different way of looking at diffraction:
no Fourier transform involved
Huygens's principle is often starting point
Hecht Ch 10, and other texts
Offers easier, intuitive picture

Disadvantages:

- Not obvious why it's true
- Doesn't give amplitude factor $-i / \lambda$
- Often Fourier space integral is easier
- Easily confused with scattering ideas


## Scattering and Huygens

In a real medium with $n \neq 1$,
each point is source of new wave $E_{\text {scat }}$
(and $E_{\text {scat }} \approx$ spherical wave)
But total field $=E_{\mathrm{inc}}+E_{\mathrm{scat}}$

In Huygens picture, $E_{\text {scat }}$ is total field
Imagine vacuum is dense elastic medium:
Disturbance comes from motion of nearby points
Sum over nearby points $=$ sum over $E_{\text {scat }}$ $=$ total field

But vacuum is not elastic medium!
Light $=$ EM wave, only sources are charges
no charge in vacuum, so no source
Confusing: Huygens picture not "real"

- just a way of interpreting an integral

Interesting that Maxwell equations suggest that vacuum acts "sort of like" a medium

But not fundamental

We'll stick to Fourier picture
Still

$$
A_{d}(x, y)=\iint A(X, Y) h(x-X, y-Y) d X d Y
$$

is very useful
In systems language,
$h=$ impulse-response function
If $A(X, Y)=E_{0} \delta(X, Y)$, then

$$
A_{d}(x, y)=E_{0} h(x, y)
$$

$h(x, y)=$ field produced by point source makes sense, $=$ spherical wave

General system:
impulse-response function and transfer function are Fourier transforms

For harmonic oscillator example:

$$
h(t)= \begin{cases}0 & (t<0) \\ \frac{1}{\omega^{\prime}} e^{-\gamma t / 2} \sin \left(\omega^{\prime} t\right) & (t>0)\end{cases}
$$

for $\omega^{\prime}=\sqrt{\omega_{0}^{2}+\gamma^{2} / 4}=$ shifted oscillation frequency
$h(t)=$ free decay of oscillator after kick at $t=0$

Secret for physics grad students:

- impulse-response function = Green's function
- transfer function $=$ propagator

Important for EM, condensed matter, quantum field theory

Fraunhofer Diffraction (Hecht 10.2)
Drawback of results so far: integrals are too hard

Even in Fresnel approximation, only Gaussians easy Develop simpler approximation:

Fraunhofer diffraction

Idea:
Suppose aperture transmits region size $a$ (ie, hole in opaque screen)

Diffraction pattern spreads at angle $\theta \approx \lambda / a$ Spreads distance $\approx \theta d$


For $\theta d \ll a$, diffraction not significant use ray optics

For $\theta d \approx a$ : complicated
Need to use Fresnel integrals

For $\theta d \gg a$ : simplifies again
Pattern spread over large area


Light reaching position $x$ corresponds to angle $\theta_{x}=x / d$

But angle $\theta_{x}$ corresponds to wavenumber $k_{x}=\theta_{x} k$
$\Rightarrow$ At large $d$, wave vector $\mathbf{k}$ maps to position
Or: field $=$ sum of plane waves
for $d \rightarrow \infty$, plane waves separate


Expect field at $(x, y)$ corresponds to
Fourier component $\left(k_{x}, k_{y}\right)=(k x / d, k y / d)$

Make precise:

$$
\begin{aligned}
& A_{d}(x, y)=\iint A(X, Y) h(x-X, y-Y) d X d Y \\
= & -\frac{i}{\lambda d} e^{i k d} \iint A(X, Y) e^{i k\left[(x-X)^{2}+(y-Y)^{2}\right] / 2 d} d X d Y
\end{aligned}
$$

Consider exponent:

$$
i \frac{k}{2 d}\left(x^{2}+y^{2}+X^{2}+Y^{2}-2 x X-2 y Y\right)
$$

Know $X^{2}+Y^{2}<a^{2}$ for aperture size $a$
If $k a^{2} / 2 d \ll 1$, can neglect or $d \gg k a^{2} / 2 \approx a^{2} / \lambda$

Then have

$$
\begin{aligned}
A_{d}(x, y)= & -\frac{i}{\lambda d} e^{i k d} e^{i k\left(x^{2}+y^{2}\right) / 2 d} \\
& \times \iint A(X, Y) e^{-i k(x X+y Y) / d} d X d Y
\end{aligned}
$$

But notice that

$$
\mathcal{A}\left(k_{x}, k_{y}\right)=\iint A(X, Y) e^{-i\left(k_{x} X+k_{y} Y\right)} d X d Y
$$

integral has same form, $k_{x} \rightarrow k x / d, k_{y} \rightarrow k y / d$
So

$$
A_{d}(x, y)=-\frac{i}{\lambda d} e^{i k d} e^{i k\left(x^{2}+y^{2}\right) / 2 d} \mathcal{A}\left(\frac{k x}{d}, \frac{k y}{d}\right)
$$

Phase shifts drop out in irradiance:

$$
\left|A_{d}(x, y)\right|^{2}=\frac{1}{\lambda^{2} d^{2}}\left|\mathcal{A}\left(\frac{k x}{d}, \frac{k y}{d}\right)\right|^{2}
$$

But phase shift makes sense too:

$$
\frac{1}{d} e^{i k\left[d+\left(x^{2}+y^{2}\right) / 2 d\right]} \approx \frac{e^{i k r}}{r}
$$

as before
Diffracted field looks like spherical wave modulated by $\mathcal{A}$

Question: In spherical wave expression above, what point in aperture is $r$ supposed to be measured from?

Finally lets us calculate something

Consider plane wave incident on rectangular slit

## Then

$A(x, y)= \begin{cases}E_{0} & (|x|<a / 2,|y|<b / 2) \\ 0 & \text { (otherwise) }\end{cases}$


Calculate diffraction pattern for large $d$

Know

$$
\mathcal{A}\left(k_{x}, k_{y}\right)=E_{0} a b \operatorname{sinc}\left(\frac{k_{x} a}{2}\right) \operatorname{sinc}\left(\frac{k_{y} b}{2}\right)
$$

So

$$
\left|A_{d}(x, y)\right|^{2}=\frac{a^{2} b^{2}}{\lambda^{2} d^{2}}\left|E_{0}\right|^{2} \operatorname{sinc}^{2}\left(\frac{k x a}{2 d}\right) \operatorname{sinc}^{2}\left(\frac{k y b}{2 d}\right)
$$

Question: Remind us of the definition of sinc one more time?


Have $\operatorname{sinc}(k x a / 2 d)=0$ when $k x a / 2 d=n \pi$ $n=$ nonzero integer
So width of central peak $\Delta x=\frac{4 \pi d}{k a}=\frac{2 \lambda d}{a}$ and $\Delta y=\frac{2 \lambda d}{b}$

More on Fraunhofer diffraction next time

## Summary:

- Convolution theorem: impulse-response function
- Fourier transform of transfer function
- Interpret as Huygens-Fresnel theory
- Each point in aperture generates spherical wave
- Large $d$ limit: Fraunhofer diffraction
- Diffraction pattern directly from transform

