Last time, developed Fraunhofer diffraction
At large distances, diffracted field
\propto transform of aperture function
Each Fourier component propagates in different direction

Today, explore Fraunhofer further

Outline:

- Summary of diffraction regimes
- Diffraction from an array
- Circular apertures
- Diffraction and lenses

Next time, consider fancier applications

- Fourier optics
- Holography

Diffraction Regimes

Several ways to study diffraction

Choice of method depends on

- wavelength λ
- aperture size a
- propagation distance d
- propagation angle θ

If $d \ll a^{2} / \lambda$, use ray optics
Aperture produces geometric shadow
Get diffraction effects near sharp edges
Noticeable at $d \approx$ few cm

For large d and $\theta \gtrsim(\lambda / d)^{1 / 4}$, need "exact" expression
$E(\mathbf{r})=\frac{1}{(2 \pi)^{2}} \iint \mathcal{A}\left(k_{x}, k_{y}\right) \mathcal{H}\left(k_{x}, k_{y}\right) e^{i\left(k_{x} x+k_{y} y\right)} d k_{x} d k_{y}$
with $\mathcal{H}\left(k_{x}, k_{y}\right)=e^{i d \sqrt{k^{2}-k_{x}^{2}-k_{y}^{2}}}$
Still approximate, fails for $\theta \gtrsim 1$:

- Ignores vector nature of \mathbf{E}
- Don't really know $A(x, y)$:

Depends on aperture thickness, material
Large angle effects very hard
Numerically solve Maxwell equations

For $\theta \lesssim(\lambda / d)^{1 / 4}$:

If $d \sim a^{2} / \lambda$, use Fresnel approximation

Either:

$$
\mathcal{H}\left(k_{x}, k_{y}\right)=e^{i k d} e^{-i d\left(k_{x}^{2}+k_{y}^{2}\right) / 2 k}
$$

with Fourier form
or convolution form:
$E(\mathbf{r})=\iint A(X, Y) h(x-X, y-Y) d X d Y$
with $h(x, y)=-i \frac{e^{i k d}}{\lambda d} e^{i k\left(x^{2}+y^{2}\right) / 2 d}$

If $d \gg a^{2} / \lambda$, use Fraunhofer approximation:

$$
E(\mathbf{r})=-\frac{i}{\lambda d} e^{i k d} e^{i k\left(x^{2}+y^{2}\right) / 2 d} \mathcal{A}\left(\frac{k x}{d}, \frac{k y}{d}\right)
$$

Simplest form of diffraction
Also called "far-field" diffraction

Extra important in lens systems

- Iater today

Example: square aperture

$$
\text { size } a=1 \mathrm{~mm}
$$

$$
\lambda=500 \mathrm{~nm}
$$

Then $a^{2} / \lambda=2 \mathrm{~m}$:

- $d<0.2 \mathrm{~m}$, use ray optics
- $0.2 \mathrm{~m}<d<20 \mathrm{~m}$, use Fresnel
- $d>20 \mathrm{~m}$, use Fraunhofer

At $d=2 \mathrm{~m}$, maximum angle for Fresnel

$$
\approx(\lambda / d)^{1 / 4} \approx 20 \mathrm{mrad} \approx 1^{\circ}
$$

Corresponds to distance $x=4 \mathrm{~cm}$ observed pattern size \sim few mm

Fraunhofer Examples

First: two slits (Hecht 10.2.2)

Slit width $(x)=b$
Height (y) $=L$
Center separation $=a$
(Hecht's notation)

Say $x=0, y=0$ in center of pair

Need $\mathcal{A}\left(k_{x}, k_{y}\right)$
Don't bother doing integral:
Know \mathcal{A} for single slit centered at $x=y=0$ is

$$
\mathcal{A}_{1}=b L \operatorname{sinc}\left(k_{x} b / 2\right) \operatorname{sinc}\left(k_{y} L / 2\right)
$$

From translation property,

$$
f(x-X) \rightarrow e^{-i k_{x} X} \mathcal{F}\left(k_{x}\right)
$$

so slit at $x=a / 2$ has transform

$$
\mathcal{A}_{1}^{\prime}=b L e^{-i k_{x} a / 2} \operatorname{sinc}\left(k_{x} b / 2\right) \operatorname{sinc}\left(k_{y} L / 2\right)
$$

9

Slit at $x=-a / 2$ has transform

$$
\mathcal{A}_{2}^{\prime}=b L e^{i k_{x} a / 2} \operatorname{sinc}\left(\frac{k_{x} b}{2}\right) \operatorname{sinc}\left(\frac{k_{y} L}{2}\right)
$$

Since transform is linear, pair gives

$$
\begin{aligned}
\mathcal{A}\left(k_{x}, k_{y}\right)= & b L\left(e^{i k_{x} a / 2}+e^{-i k_{x} a / 2}\right) \\
& \times \operatorname{sinc}\left(\frac{k_{x} b}{2}\right) \operatorname{sinc}\left(\frac{k_{y} L}{2}\right) \\
= & 2 b L \cos \left(\frac{k_{x} a}{2}\right) \operatorname{sinc}\left(\frac{k_{x} b}{2}\right) \operatorname{sinc}\left(\frac{k_{y} L}{2}\right)
\end{aligned}
$$

Then diffracted field is

$$
\begin{aligned}
E(x, y) & =\frac{1}{\lambda d} C \mathcal{A}\left(\frac{k x}{d}, \frac{k y}{d}\right) \\
& =C \frac{2 b L}{\lambda d} \cos \left(\frac{k x a}{2 d}\right) \operatorname{sinc}\left(\frac{k x b}{2 d}\right) \operatorname{sinc}\left(\frac{k y L}{2 d}\right)
\end{aligned}
$$

for $C=-i e^{i k d} e^{i k\left(x^{2}+y^{2}\right) / 2 d, \text { with }|C|=1}$

Question: Why does the cosine factor depend on x but not y ?

Plot vs. x for $a=3 b$

Like pattern for single slit $\times 2 \cos (k x a / 2 d)$
Recall lecture 13:
Interference pattern from two point sources

$$
E(x)=2 E_{1} \cos (k x a / 2 d)
$$

$E_{1}=$ field from single source
\Rightarrow Get product of two-point pattern and single slit pattern

Diffraction from an Array (Hecht 10.2.3)

What if there were N slits?
Or generalize:
suppose array of N identical apertures

Each aperture described by $A_{1}(x, y)$
Centers at $x=n a$ for $n=0$ to $N-1$

Individual apertures have transform $\mathcal{A}_{1}\left(k_{x}, k_{y}\right)$ (hard to do for hexagon)

Given \mathcal{A}_{1}, what is total field?
Have $A(x, y)=\sum_{n=0}^{N-1} A_{1}(x-n a, y)$
Using linearity and translation:

$$
\begin{aligned}
\mathcal{A}\left(k_{x}, k_{y}\right) & =\sum_{n=0}^{N-1} e^{-i n k_{x} a} \mathcal{A}_{1}\left(k_{x}, k_{y}\right) \\
& =\mathcal{A}_{1}\left(k_{x}, k_{y}\right) \sum_{n=0}^{N-1} e^{-i n k_{x} a}
\end{aligned}
$$

Define

$$
\mathcal{P}\left(k_{x}\right)=\sum_{n=0}^{N-1} e^{-i n k_{x} a}
$$

independent of individual aperture shape
So Fraunhofer diffraction field is

$$
A_{d}(x, y) \propto \mathcal{A}_{1}\left(\frac{k x}{d}, \frac{k y}{d}\right) \mathcal{P}\left(\frac{k x}{d}\right)
$$

envelope \mathcal{A}_{1} modulated by \mathcal{P}

Calculate \mathcal{P} : for $\alpha=e^{-i k_{x} a}$,

$$
\mathcal{P}=\sum_{n=0}^{N-1} \alpha^{n}
$$

Geometric series:

$$
\begin{aligned}
& \mathcal{P}=1+\alpha+\alpha^{2}+\cdots+\alpha^{N-1} \\
& \alpha \mathcal{P}=\alpha+\alpha^{2}+\cdots+\alpha^{N}
\end{aligned}
$$

So $\mathcal{P}-\alpha \mathcal{P}=1-\alpha^{N}=(1-\alpha) \mathcal{P}$

$$
\mathcal{P}=\frac{1-\alpha^{N}}{1-\alpha}=\frac{1-e^{-i N k_{x} a}}{1-e^{-i k_{x} a}}
$$

Rewrite

$$
\begin{aligned}
\mathcal{P}\left(k_{x}\right) & =\left(\frac{e^{-i N k_{x} a / 2}}{e^{-i k_{x} a / 2}}\right)\left(\frac{e^{i N k_{x} a / 2}-e^{-i N k_{x} a / 2}}{e^{i k_{x} a / 2}-e^{-i k_{x} a / 2}}\right) \\
& =e^{-i k_{x}[(N-1) a / 2]}\left[\frac{\sin \left(N k_{x} a / 2\right)}{\sin \left(k_{x} a / 2\right)}\right] \\
& =e^{-i k_{x} x_{m}} \frac{\sin \left(N k_{x} a / 2\right)}{\sin \left(k_{x} a / 2\right)}
\end{aligned}
$$

where $x_{m}=\frac{(N-1)}{2} a=$ center of pattern
Question: What is $\mathcal{P}(0)$?

Plot $\sin ^{2}(N \beta) / \sin ^{2}(\beta)$:

19

Peaks located at $\beta=n \pi$
Get sharper as N increases
width $\Delta \beta=2 \pi / N$

Remember, \mathcal{P} multiplies single aperture pattern Ten rectangular slits:

Sharp lines useful for spectroscopy
Peaks at $\beta=\frac{k x a}{2 d}=m \pi$
or $x=\frac{2 \pi m d}{k a}=\frac{m \lambda d}{a}$: depends on λ
If d, a known, use to determine λ

Works about the same even for $a, b \approx \lambda$
(Fresnel approx not valid)
Get peaks at angles $\sin \theta=\frac{m \lambda}{a}$
$m=$ order of maximum

Demo: diffraction grating

Grating $a=1.7 \mu \mathrm{~m}$
specify $1 / a=600$ lines $/ m m$
Light: Hg lamp
$\lambda=578 \mathrm{~nm}$ (yellow)
$\lambda=546 \mathrm{~nm}$ (green)
$\lambda=435 \mathrm{~nm}$ (blue)
Grating is highly dispersive
-better than prisms

Circular Apertures (Hecht 10.2.5)

Say aperture is circular hole, radius a

$$
A(x, y)= \begin{cases}E_{0} & \left(\sqrt{x^{2}+y^{2}}<a\right) \\ 0 & \text { (else) }\end{cases}
$$

Need to know Fourier transform

$$
\mathcal{A}\left(k_{x}, k_{y}\right)=\iint A(x, y) e^{-i\left(k_{x} x+k_{y} y\right)} d x d y
$$

Can't separate into two 1D transforms

- need to work out integral

Use polar coordinates

$$
\begin{aligned}
& x=\rho \cos \phi \\
& y=\rho \sin \phi
\end{aligned}
$$

Expect \mathcal{A} symmetric in $\left(k_{x}, k_{y}\right)$
So solve for $k_{y}=0$, then use

$$
\mathcal{A}\left(k_{x}, k_{y}\right)=\mathcal{A}\left(\sqrt{k_{x}^{2}+k_{y}^{2}}, 0\right)
$$

$\mathcal{A}\left(k_{x}, 0\right)=\int_{0}^{a} \int_{0}^{2 \pi} e^{-i k_{x} \rho \cos \phi} \rho d \phi d \rho$

Integral not elementary

Have $\int_{0}^{2 \pi} e^{-i k_{x} \rho \cos \phi} d \phi=2 \pi J_{0}\left(k_{x} \rho\right)$
$J_{0}=$ Bessel function
Like sinc, but not exactly

Bessel Function Primer

Family of functions:

$$
\begin{aligned}
& J_{m}(u)= \\
& \frac{1}{2 \pi i^{m}} \int_{0}^{2 \pi} e^{i(m \phi+u \cos \phi)} d \phi
\end{aligned}
$$

Fairly common functions (after trig, exp)

Summarize properties

Solutions of Bessel's equation:

$$
u^{2} J_{m}^{\prime \prime}+u J_{m}^{\prime}+\left(u^{2}-m^{2}\right) J_{m}=0
$$

Power series:

$$
J_{m}(u)=\left(\frac{u}{2}\right)^{m} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!(n+m)!}\left(\frac{u}{2}\right)^{2 n}
$$

Large u expansion:

$$
J_{m}(u) \rightarrow\left(\frac{2}{\pi u}\right)^{1 / 2} \cos \left[u-\frac{(2 m+1) \pi}{4}\right]
$$

Orthogonality:

$$
\int_{0}^{\infty} u J_{m}(\alpha u) J_{m}(\beta u) d u=\frac{1}{\alpha} \delta(\alpha-\beta)
$$

Derivative relation:

$$
\frac{d}{d u}\left[u^{m} J_{m}(u)\right]=u^{m} J_{m-1}(u)
$$

Think of \approx cosine (even m) or sine (odd m)

Apply to diffraction problem

$$
\mathcal{A}\left(k_{x}, 0\right)=2 \pi \int_{0}^{a} \rho J_{0}\left(k_{x} \rho\right) d \rho
$$

Set $u=k_{x} \rho$

$$
\mathcal{A}\left(k_{x}, 0\right)=\frac{2 \pi}{k_{x}^{2}} \int_{0}^{k_{x} a} u J_{0}(u) d u
$$

From derivative relation

$$
u J_{0}(u)=\frac{d}{d u}\left[u J_{1}(u)\right]
$$

so

$$
\int u J_{0}(u) d u=u J_{1}(u)
$$

So transform is

$$
\mathcal{A}\left(k_{x}, 0\right)=\left.\frac{2 \pi}{k_{x}^{2}}\left[u J_{1}(u)\right]\right|_{0} ^{k_{x} a}
$$

or

$$
\mathcal{A}\left(k_{x}, k_{y}\right)=\frac{2 \pi a}{k_{\rho}} J_{1}\left(k_{\rho} a\right)
$$

for $k_{\rho} \equiv \sqrt{k_{x}^{2}+k_{y}^{2}}$
Note, for small $k_{\rho}, J_{1}\left(k_{\rho} a\right) \rightarrow k_{\rho} a / 2$
Write

$$
\mathcal{A}\left(k_{x}, k_{y}\right)=\pi a^{2}\left[\frac{2 J_{1}\left(k_{\rho} a\right)}{k_{\rho} a}\right]
$$

Where $\left[\frac{2 J_{1}\left(k_{\rho} a\right)}{k_{\rho} a}\right]$ is like sinc function

So Fraunhofer pattern is

$$
\begin{aligned}
|E(x, y)|^{2} & =\left|E_{0}\right|^{2}\left(\frac{2 \pi a}{\lambda k \rho}\right)^{2} J_{1}\left(\frac{k \rho a}{d}\right)^{2} \\
& =\left|E_{0}\right|^{2} \frac{a^{2}}{\rho^{2}} J_{1}\left(\frac{k \rho a}{d}\right)^{2}
\end{aligned}
$$

First zero at $k \rho a / d=3.83$

$$
\rho=3.83 \frac{d}{a k}=1.22 \frac{\lambda d}{a}
$$

Diffraction angle $\theta=\rho / d=1.22 \lambda / a$ $\theta \approx \lambda / a$ as always

Called Airy pattern:

Question: The secondary maxima for a circular aperture are smaller than for a square aperture. Why?

Diffraction and Lenses

Frauhofer only valid for very large d
Usually observed using lenses:
image $d=\infty$ onto focal plane
Example:

Plane wave incident on lens diameter D

Without lens, get Airy pattern at ∞
Point $x=\theta_{x} d$ at ∞
maps to $x=\theta_{x} f$ in focal plane

So expect $E(x, y) \propto \mathcal{A}(k x / f, k y / f)$

At focal plane of lens

$$
|E(x, y)|^{2}=\left|E_{0}\right|^{2} \frac{D^{2}}{4 \rho^{2}} J_{1}\left(\frac{k \rho D}{2 f}\right)^{2}
$$

(using $D=2 a$)

Gives spot diameter $1.22 \frac{\lambda f}{D}$
$=$ resolution limit of lens
Same result cited in discussion of aberrations

More generally,
lens gives you Fraunhofer pattern for any object:

At object plane, $E=A(x, y)$
Set by aperture or other condition
Assume diffraction angle \ll (lens diameter)/s

- so lens aperture unimportant

At focal plane

$$
E(x, y)=\frac{C}{\lambda f} \mathcal{A}\left(\frac{k x}{f}, \frac{k y}{f}\right)
$$

with phase factor

$$
C=-i e^{i k(s+f)} \exp \left[-i \frac{\left(x^{2}+y^{2}\right)(s-f)}{2 k}\right]
$$

Result valid within Fresnel approximation
(Derivation Saleh and Teich 4.2B)

Note only phase depends on s
Object has same far-field pattern for any position

Focal plane of lens is special Sometimes called "transform plane"

Convenient way to see Fraunhofer pattern other applications next time

Summary:

- Diffraction approx controlled by $a^{2} / \lambda d$ But no approximations for large θ
- Array gives single-object pattern, modulated by grating function
- Grating: sharp peaks for large N
- Circular aperture \rightarrow Bessel function pattern radius $=1.22 \lambda a / d$
- Lens: Fraunhofer pattern \rightarrow focal plane Mostly $d \rightarrow f$ everywhere

