Phys 531

Lecture 17 2 November 2004

Applications of Diffraction

Last time, developed Fraunhofer diffraction

At large distances, diffracted field

 \propto transform of aperture function

Each Fourier component propagates in different direction

Today, explore Fraunhofer further

1

Outline:

- Summary of diffraction regimes
- Diffraction from an array
- Circular apertures
- Diffraction and lenses

Next time, consider fancier applications

- Fourier optics
- Holography

Diffraction Regimes

Several ways to study diffraction

Choice of method depends on

- wavelength λ
- aperture size a
- propagation distance d
- propagation angle heta

If $d \ll a^2/\lambda$, use ray optics Aperture produces geometric shadow

Get diffraction effects near sharp edges Noticeable at $d \approx$ few cm

3

For large d and $\theta \gtrsim (\lambda/d)^{1/4}$, need "exact" expression

$$E(\mathbf{r}) = \frac{1}{(2\pi)^2} \iint \mathcal{A}(k_x, k_y) \mathcal{H}(k_x, k_y) e^{i(k_x x + k_y y)} dk_x dk_y$$

with
$$\mathcal{H}(k_x, k_y) = e^{id\sqrt{k^2 - k_x^2 - k_y^2}}$$

Still approximate, fails for $\theta \gtrsim 1$:

- Ignores vector nature of E
- Don't really know A(x,y):

 Depends on aperture thickness, material

Large angle effects very hard Numerically solve Maxwell equations For $\theta \lesssim (\lambda/d)^{1/4}$:

If $d \sim a^2/\lambda$, use Fresnel approximation Either:

$$\mathcal{H}(k_x, k_y) = e^{ikd} e^{-id(k_x^2 + k_y^2)/2k}$$

with Fourier form

or convolution form:

$$E(\mathbf{r}) = \iint A(X,Y)h(x-X,y-Y) dX dY$$

with
$$h(x,y) = -i\frac{e^{ikd}}{\lambda d}e^{ik(x^2+y^2)/2d}$$

5

If $d \gg a^2/\lambda$, use Fraunhofer approximation:

$$E(\mathbf{r}) = -\frac{i}{\lambda d} e^{ikd} e^{ik(x^2 + y^2)/2d} \mathcal{A}\left(\frac{kx}{d}, \frac{ky}{d}\right)$$

Simplest form of diffraction

Also called "far-field" diffraction

Extra important in lens systems - later today

Example: square aperture

size
$$a=1$$
 mm $\lambda=500$ nm

Then $a^2/\lambda = 2$ m:

- d < 0.2 m, use ray optics
- \bullet 0.2 m < d < 20 m, use Fresnel
- d > 20 m, use Fraunhofer

At d=2 m, maximum angle for Fresnel $\approx (\lambda/d)^{1/4} \approx 20$ mrad $\approx 1^{\circ}$

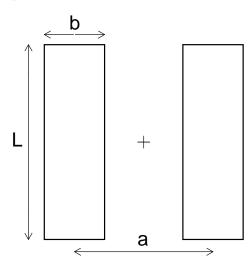
Corresponds to distance x = 4 cm observed pattern size \sim few mm

7

Fraunhofer Examples

First: two slits (Hecht 10.2.2)

Slit width (x) = bHeight (y) = LCenter separation = a(Hecht's notation)



Say x = 0, y = 0 in center of pair

Need $\mathcal{A}(k_x, k_y)$

Don't bother doing integral:

Know \mathcal{A} for single slit centered at x = y = 0 is

$$A_1 = bL \operatorname{sinc}(k_x b/2) \operatorname{sinc}(k_y L/2)$$

From translation property,

$$f(x-X) \to e^{-ik_x X} \mathcal{F}(k_x)$$

so slit at x = a/2 has transform

$$\mathcal{A}'_1 = bLe^{-ik_xa/2}\operatorname{sinc}(k_xb/2)\operatorname{sinc}(k_yL/2)$$

9

Slit at x = -a/2 has transform

$$\mathcal{A}_2' = bLe^{ik_xa/2}\operatorname{sinc}\left(\frac{k_xb}{2}\right)\operatorname{sinc}\left(\frac{k_yL}{2}\right)$$

Since transform is linear, pair gives

$$\mathcal{A}(k_x, k_y) = bL \left(e^{ik_x a/2} + e^{-ik_x a/2} \right)$$

$$\times \operatorname{sinc}\left(\frac{k_x b}{2} \right) \operatorname{sinc}\left(\frac{k_y L}{2} \right)$$

$$= 2bL \cos\left(\frac{k_x a}{2} \right) \operatorname{sinc}\left(\frac{k_x b}{2} \right) \operatorname{sinc}\left(\frac{k_y L}{2} \right)$$

Then diffracted field is

$$E(x,y) = \frac{1}{\lambda d} C \mathcal{A} \left(\frac{kx}{d}, \frac{ky}{d} \right)$$

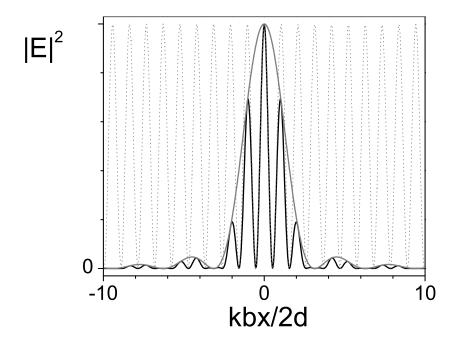
$$= C \frac{2bL}{\lambda d} \cos \left(\frac{kxa}{2d} \right) \operatorname{sinc} \left(\frac{kxb}{2d} \right) \operatorname{sinc} \left(\frac{kyL}{2d} \right)$$

for $C = -ie^{ikd} e^{ik(x^2+y^2)/2d}$, with |C| = 1

Question: Why does the cosine factor depend on x but not y?

11

Plot vs. x for a = 3b



Like pattern for single slit $\times 2\cos(kxa/2d)$

Recall lecture 13:

Interference pattern from two point sources

$$E(x) = 2E_1 \cos(kxa/2d)$$

 E_1 = field from single source

⇒ Get product of two-point pattern and single slit pattern

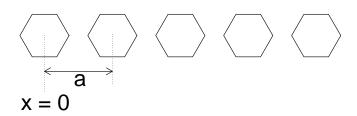
13

Diffraction from an Array (Hecht 10.2.3)

What if there were N slits?

Or generalize:

suppose array of N identical apertures



Each aperture described by $A_1(x,y)$ Centers at x = na for n = 0 to N - 1 Individual apertures have transform $A_1(k_x, k_y)$ (hard to do for hexagon)

Given A_1 , what is total field?

Have
$$A(x,y) = \sum_{n=0}^{N-1} A_1(x - na, y)$$

Using linearity and translation:

$$A(k_x, k_y) = \sum_{n=0}^{N-1} e^{-ink_x a} A_1(k_x, k_y)$$
$$= A_1(k_x, k_y) \sum_{n=0}^{N-1} e^{-ink_x a}$$

15

Define

$$\mathcal{P}(k_x) = \sum_{n=0}^{N-1} e^{-ink_x a}$$

independent of individual aperture shape

So Fraunhofer diffraction field is

$$A_d(x,y) \propto \mathcal{A}_1\left(\frac{kx}{d}, \frac{ky}{d}\right) \mathcal{P}\left(\frac{kx}{d}\right)$$

envelope \mathcal{A}_1 modulated by \mathcal{P}

Calculate \mathcal{P} : for $\alpha = e^{-ik_x a}$,

$$\mathcal{P} = \sum_{n=0}^{N-1} \alpha^n$$

Geometric series:

$$\mathcal{P} = 1 + \alpha + \alpha^2 + \dots + \alpha^{N-1}$$

$$\alpha \mathcal{P} = \alpha + \alpha^2 + \dots + \alpha^N$$
So
$$\mathcal{P} - \alpha \mathcal{P} = 1 - \alpha^N = (1 - \alpha)\mathcal{P}$$

$$\mathcal{P} = \frac{1 - \alpha^N}{1 - \alpha} = \frac{1 - e^{-iNk_x a}}{1 - e^{-ik_x a}}$$

17

Rewrite

$$\mathcal{P}(k_x) = \left(\frac{e^{-iNk_x a/2}}{e^{-ik_x a/2}}\right) \left(\frac{e^{iNk_x a/2} - e^{-iNk_x a/2}}{e^{ik_x a/2} - e^{-ik_x a/2}}\right)$$

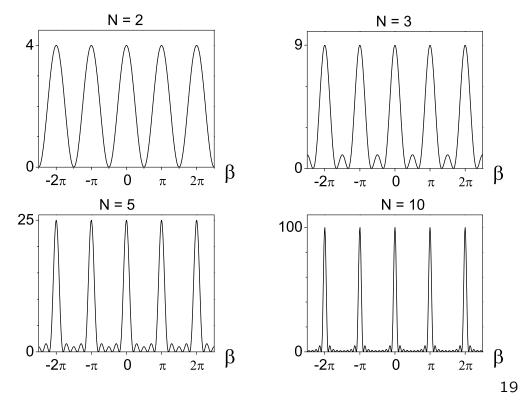
$$= e^{-ik_x [(N-1)a/2]} \left[\frac{\sin(Nk_x a/2)}{\sin(k_x a/2)}\right]$$

$$= e^{-ik_x x_m} \frac{\sin(Nk_x a/2)}{\sin(k_x a/2)}$$

where $x_m = \frac{(N-1)}{2}a = \text{center of pattern}$

Question: What is $\mathcal{P}(0)$?

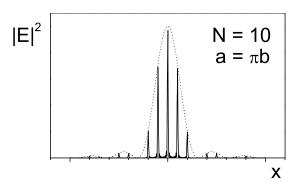
Plot $\sin^2(N\beta)/\sin^2(\beta)$:



Peaks located at $\beta=n\pi$

Get sharper as N increases width $\Delta\beta=2\pi/N$

Remember, \mathcal{P} multiplies single aperture pattern Ten rectangular slits:



Sharp lines useful for spectroscopy

Peaks at
$$\beta = \frac{kxa}{2d} = m\pi$$

or
$$x = \frac{2\pi md}{ka} = \frac{m\lambda d}{a}$$
: depends on λ

If d, a known, use to determine λ

Works about the same even for $a, b \approx \lambda$ (Fresnel approx not valid)

Get peaks at angles
$$\sin \theta = \frac{m\lambda}{a}$$

m = order of maximum

21

Demo: diffraction grating

Grating
$$a=1.7~\mu\mathrm{m}$$
 specify $1/a=600$ lines/mm

Light: Hg lamp

$$\lambda = 578 \text{ nm (yellow)}$$

$$\lambda = 546 \text{ nm (green)}$$

$$\lambda = 435 \text{ nm (blue)}$$

Grating is highly dispersive -better than prisms

Circular Apertures (Hecht 10.2.5)

Say aperture is circular hole, radius a

$$A(x,y) = \begin{cases} E_0 & \left(\sqrt{x^2 + y^2} < a\right) \\ 0 & \text{(else)} \end{cases}$$

Need to know Fourier transform

$$A(k_x, k_y) = \iint A(x, y)e^{-i(k_x x + k_y y)} dx dy$$

Can't separate into two 1D transforms

- need to work out integral

23

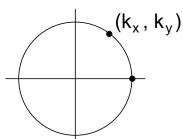
Use polar coordinates

$$x = \rho \cos \phi$$
$$y = \rho \sin \phi$$

Expect A symmetric in (k_x, k_y)

So solve for $k_y = 0$, then use

$$\mathcal{A}(k_x, k_y) = \mathcal{A}\left(\sqrt{k_x^2 + k_y^2}, 0\right)$$



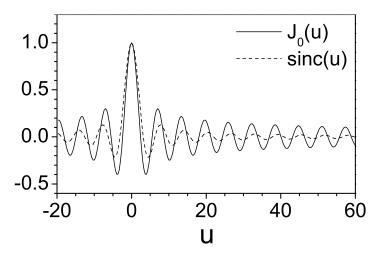
$$\mathcal{A}(k_x,0) = \int_0^a \int_0^{2\pi} e^{-ik_x \rho \cos \phi} \rho \, d\phi \, d\rho$$

Integral not elementary

Have
$$\int_0^{2\pi} e^{-ik_x\rho\cos\phi}d\phi = 2\pi J_0(k_x\rho)$$

 $J_0 = Bessel function$

Like sinc, but not exactly



25

Bessel Function Primer

Family of functions:

$$J_m(u) =$$

$$\frac{1}{2\pi i^m} \int_0^{2\pi} e^{i(m\phi + u\cos\phi)} d\phi$$

Fairly common functions (after trig, exp)

1.0 $J_0(u)$ 0.5 $J_1(u)$ 0.5 $J_1(u)$ 0.5 $J_2(u)$ 0.5 $J_2(u)$ 0.5 $J_2(u)$

Summarize properties

Solutions of Bessel's equation:

$$u^2J_m'' + uJ_m' + (u^2 - m^2)J_m = 0$$

Power series:

$$J_m(u) = \left(\frac{u}{2}\right)^m \sum_{n=0}^{\infty} \frac{(-1)^n}{n!(n+m)!} \left(\frac{u}{2}\right)^{2n}$$

Large u expansion:

$$J_m(u) o \left(\frac{2}{\pi u}\right)^{1/2} \cos\left[u - \frac{(2m+1)\pi}{4}\right]$$

27

Orthogonality:

$$\int_0^\infty u J_m(\alpha u) J_m(\beta u) du = \frac{1}{\alpha} \delta(\alpha - \beta)$$

Derivative relation:

$$\frac{d}{du}[u^m J_m(u)] = u^m J_{m-1}(u)$$

Think of \approx cosine (even m) or sine (odd m)

Apply to diffraction problem

$$\mathcal{A}(k_x,0) = 2\pi \int_0^a \rho J_0(k_x \rho) \, d\rho$$

Set $u = k_x \rho$

$$A(k_x, 0) = \frac{2\pi}{k_x^2} \int_0^{k_x a} u J_0(u) \, du$$

From derivative relation

$$uJ_0(u) = \frac{d}{du}[uJ_1(u)]$$

SO

$$\int u J_0(u) \, du = u J_1(u)$$

29

So transform is

$$A(k_x, 0) = \frac{2\pi}{k_x^2} [uJ_1(u)]\Big|_0^{k_x a}$$

or

$$A(k_x, k_y) = \frac{2\pi a}{k_\rho} J_1(k_\rho a)$$

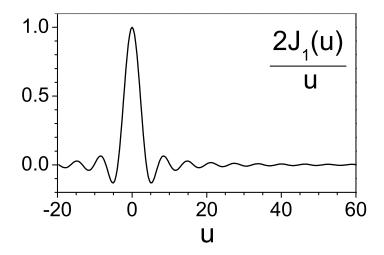
for
$$k_{\rho} \equiv \sqrt{k_x^2 + k_y^2}$$

Note, for small $k_{
ho}$, $J_1(k_{
ho}a)
ightarrow k_{
ho}a/2$

Write

$$\mathcal{A}(k_x, k_y) = \pi a^2 \left[\frac{2J_1(k_\rho a)}{k_\rho a} \right]$$

Where
$$\left[\frac{2J_1(k_{\rho}a)}{k_{\rho}a}\right]$$
 is like sinc function



31

So Fraunhofer pattern is

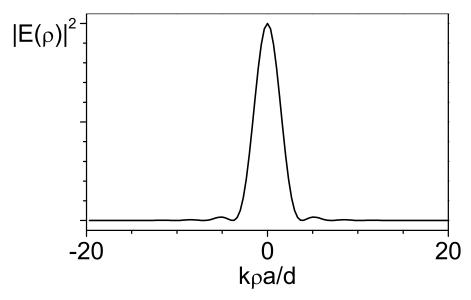
$$|E(x,y)|^2 = |E_0|^2 \left(\frac{2\pi a}{\lambda k \rho}\right)^2 J_1 \left(\frac{k\rho a}{d}\right)^2$$
$$= |E_0|^2 \frac{a^2}{\rho^2} J_1 \left(\frac{k\rho a}{d}\right)^2$$

First zero at $k\rho a/d=3.83$

$$\rho = 3.83 \frac{d}{ak} = 1.22 \frac{\lambda d}{a}$$

Diffraction angle $\theta = \rho/d = 1.22 \lambda/a$ $\theta \approx \lambda/a$ as always

Called Airy pattern:



Question: The secondary maxima for a circular aperture are smaller than for a square aperture. Why?

33

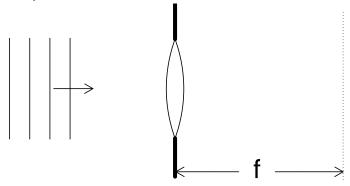
Diffraction and Lenses

Frauhofer only valid for very large d

Usually observed using lenses:

image $d=\infty$ onto focal plane

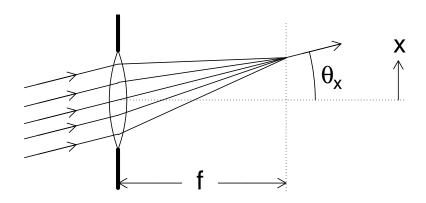
Example:



Plane wave incident on lens diameter D

Without lens, get Airy pattern at ∞

Point
$$x = \theta_x d$$
 at ∞ maps to $x = \theta_x f$ in focal plane



So expect $E(x,y) \propto \mathcal{A}(kx/f,ky/f)$

35

At focal plane of lens

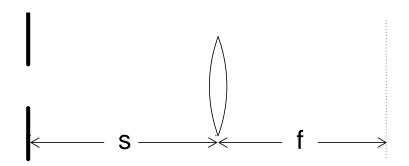
$$|E(x,y)|^2 = |E_0|^2 \frac{D^2}{4\rho^2} J_1 \left(\frac{k\rho D}{2f}\right)^2$$
 (using $D = 2a$)

Gives spot diameter
$$1.22 \frac{\lambda f}{D}$$

= resolution limit of lens

Same result cited in discussion of aberrations

More generally, lens gives you Fraunhofer pattern for any object:



At object plane, E = A(x, y)Set by aperture or other condition

Assume diffraction angle \ll (lens diameter)/s - so lens aperture unimportant

37

At focal plane

$$E(x,y) = \frac{C}{\lambda f} \mathcal{A}\left(\frac{kx}{f}, \frac{ky}{f}\right)$$

with phase factor

$$C = -ie^{ik(s+f)} \exp\left[-i\frac{(x^2+y^2)(s-f)}{2k}\right]$$

Result valid within Fresnel approximation (Derivation Saleh and Teich 4.2B)

Note only phase depends on sObject has same far-field pattern for any position

Focal plane of lens is special Sometimes called "transform plane"

Convenient way to see Fraunhofer pattern other applications next time

39

Summary:

- Diffraction approx controlled by $a^2/\lambda d$ But no approximations for large θ
- Array gives single-object pattern, modulated by grating function
- \bullet Grating: sharp peaks for large N
- Circular aperture \rightarrow Bessel function pattern radius = $1.22 \, \lambda a/d$
- ullet Lens: Fraunhofer pattern o focal plane Mostly d o f everywhere