Next three lectures: polarization explore vector nature of light

Today: basic ideas
No Fourier transforms required!

Outline:

- Notation and conventions
- Polarization states
- Basis states
- Unpolarized light
- Polarization and quantum mechanics

Follow book more closely again: Chapter 8
Note, book neglects complex notation until §8.13

- we'll use from beginning

Next time:
Generating and manipulating polarized light

Conventions

Have been ignoring vector nature of \mathbf{E}

- Not very important for diffraction
- Simplifies calculations

But it is important for many things
Already saw in Fresnel relations

When is polarization important?

When can we ignore polarization?

- Imaging problems
- Interference/diffraction for beams at small angles

When is it important?

- Transmittance/reflectance calcs
- Superposing beams at large angles
- Detailed interactions with matter:

Birefringent materials, surface effects, atomic/molecular transitions, nonlinear optics, magneto-optical effects, electro-optical effects, ...
Beyond this course, but common applications

Review what we know:
Plane wave solution is

$$
\mathbf{E}(\mathbf{r}, t)=\mathbf{E}_{0} e^{i(\mathbf{k} \cdot \mathbf{r}-\omega t)}
$$

complex vector amplitude \mathbf{E}_{0}, know $\mathbf{k} \cdot \mathbf{E}_{0}=0$

Standard configuration: take $\mathbf{k}=k \widehat{\mathbf{z}}$
Then $\mathbf{E}_{0}=E_{0 x} \widehat{\mathbf{x}}+E_{0 y} \widehat{\mathbf{y}}$
Real fields are

$$
\begin{aligned}
& E_{x}(z, t)=\left|E_{0 x}\right| \cos \left(k z-\omega t+\phi_{x}\right) \\
& E_{y}(z, t)=\left|E_{0 y}\right| \cos \left(k z-\omega t+\phi_{y}\right)
\end{aligned}
$$

Phases ϕ_{x}, ϕ_{y} are independent
Relation between phases sets polarization

- along with amplitudes $\left|E_{0 x}\right|, \mid E_{0 y}$

Define phase difference $\varepsilon=\phi_{y}-\phi_{x}$
Write

$$
\begin{aligned}
& E_{x}(z, t)=\left|E_{0 x}\right| \cos (k z-\omega t+\phi) \\
& E_{y}(z, t)=\left|E_{0 y}\right| \cos (k z-\omega t+\phi+\varepsilon)
\end{aligned}
$$

don't worry about overall phase ϕ

In complex form:

$$
\begin{aligned}
& E_{x}(z, t)=\left|E_{0 x}\right| e^{i \phi} e^{i(k z-\omega t)} \\
& E_{y}(z, t)=\left|E_{0 y}\right| e^{i(\phi+\varepsilon)} e^{i(k z-\omega t)}
\end{aligned}
$$

Define complex amplitude

$$
E_{0}=\sqrt{\left|E_{0 x}\right|^{2}+\left|E_{0 y}\right|^{2}} e^{i \phi}
$$

and polarization vector $=$ Jones vector $=$

$$
\widehat{\jmath}=\frac{\left|E_{0 x}\right|}{\left|E_{0}\right|} \widehat{\mathbf{x}}+\frac{\left|E_{0 y}\right|}{\left|E_{0}\right|} e^{i \varepsilon} \widehat{\mathbf{y}}
$$

Then $\mathbf{E}(z, t)=E_{0} \hat{\jmath} e^{i(k z-\omega t)}$

Polarization States (Hecht 8.1)

Look at \mathbf{E} for different ε
Take $\phi=0$ for simplicity

Suppose $\varepsilon=0$
Then $E_{x}(z, t)=\left|E_{0 x}\right| \cos (k z-\omega t)$

$$
E_{y}(z, t)=\left|E_{0 y}\right| \cos (k z-\omega t)
$$

When E_{x} is maximum, so is E_{y}
When E_{x} is zero, so is E_{y}

Trace $\mathbf{E}(t)$ in $z=0$ plane:

E oscillates along line: state called linear polarization

In 3D, E oscillates in plane plane called plane of polarization

Snapshot of $\mathrm{E}(z, t)$ looks like cosine function lying in plane of polarization

Used linearly polarized light in original derivations only \widehat{x} or $\widehat{\mathbf{y}}$

More generally, allow any plane

Complex notation:

$$
\mathbf{E}(z, t)=E_{0} \hat{\jmath}^{i(k z-\omega t)}
$$

with

$$
\widehat{\jmath}=\cos \alpha \widehat{\mathbf{x}}+\sin \alpha \widehat{\mathbf{y}}
$$

for $\alpha=\tan ^{-1}\left(E_{0 y} / E_{0 x}\right)$

Plane of polarization spanned by \mathbf{k} and $\hat{\jmath}$

Question: How are polarization states with $\hat{\jmath}$ and $-\hat{\jmath}$ different?

Another special case: $\varepsilon= \pm \pi / 2$
and $\left|E_{0 x}\right|=\left|E_{0 y}\right|$

Then $E_{x}(z, t)=\left|E_{0 x}\right| \cos (k z-\omega t)$
and $E_{y}(z, t)=\left|E_{0 x}\right| \cos (k z-\omega t \pm \pi / 2)$

$$
=\mp\left|E_{0 x}\right| \sin (k z-\omega t)
$$

Plot in $z=0$ plane for $\varepsilon=+\pi / 2$
So $E_{x}(z, t)=\left|E_{0 x}\right| \cos (\omega t)$
$E_{y}(z, t)=\left|E_{0 x}\right| \sin (\omega t)$

E rotates in circle

Called circular polarization

Note if $\varepsilon=-\pi / 2$, \mathbf{E} rotates in opposite direction

Call $\varepsilon=-\pi / 2$ right-circular polarization (RCP) $\varepsilon=+\pi / 2$ left-circular polarization (LCP)

At fixed $t, \mathrm{E}(z)$ traces out helix $=$ corkscrew
RCP: right-handed screw
LCP: left-handed screw

RCP vs. LCP very easy to mix up
LCP:

- For fixed z, E rotates in counter-clockwise sense
- when light propagating toward observer
- For fixed t, E rotates in clockwise sense as z increases

Because of sign difference in $k z-\omega t$ factor

Also, if complex convention is $e^{i(\omega t-k z)}$
then sign of phases reversed
Fortunately, rarely need to know which is which

Complex notation:

$$
\mathbf{E}(z, t)=E_{0} \hat{\jmath} e^{i(k z-\omega t)}
$$

with

$$
\begin{align*}
& \hat{\jmath}=\frac{1}{\sqrt{2}}(\widehat{x}-i \widehat{y}) \quad(\mathrm{RCP}) \\
& \hat{\jmath}=\frac{1}{\sqrt{2}}(\widehat{\mathrm{x}}+i \widehat{\mathrm{y}}) \quad(\mathrm{LCP}) \tag{LCP}
\end{align*}
$$

and $E_{0}=\sqrt{2} E_{0 x}$

Question: As E rotates, amplitude is always $E_{0 x}$. So why so we have $E_{0}=\sqrt{2} E_{0 x}$?

Linear and circular are only special polarizations
General case: elliptical polarization
Example:

$$
\left|E_{0 y}\right|=2\left|E_{0 x}\right| \quad \varepsilon=\pi / 3
$$

Then for $z=0$:

$$
\begin{aligned}
& E_{x}(t)=\left|E_{0 x}\right| \cos (\omega t) \\
& E_{y}(t)=2\left|E_{0 x}\right| \cos (\omega t-\pi / 3)
\end{aligned}
$$

Traces out ellipse:

Equation of ellipse from $\left|E_{0 x}\right|,\left|E_{0 y}\right|$ and ε :

$$
\frac{E_{x}^{2}}{\left|E_{0 x}\right|^{2}}+\frac{E_{y}^{2}}{\left|E_{0 y}\right|^{2}}-\frac{2 E_{x} E_{y} \cos \varepsilon}{\left|E_{0 x}\right|\left|E_{0 y}\right|}=\sin ^{2} \varepsilon
$$

Characterize by angle α and eccentricity $e=a / b$

19

Define $p=\left|E_{0 y}\right| /\left|E_{0 x}\right|$
Then angle of axes α :

$$
\tan 2 \alpha=\frac{2 p \cos \varepsilon}{1-p^{2}} \quad \text { (Note: axis ambiguous) }
$$

and eccentricity e :

$$
e^{2}=\frac{1+p^{2}+\sqrt{1+2 p^{2} \cos 2 \varepsilon+p^{4}}}{1+p^{2}-\sqrt{1+2 p^{2} \cos 2 \varepsilon+p^{4}}}
$$

For example shown, $\alpha=73.1^{\circ}$ and $e=2.48$
These formulas hard to find!

General properties:

- eccentricity $=0$ for $\varepsilon=0$ (linear polarization)
- eccentricity max for $\varepsilon= \pm \pi / 2$
(circ. if $\left|E_{0 x}\right|=\left|E_{0 y}\right|$)
- right-handed rotation for $\varepsilon<0$
- left-handed for $\varepsilon>0$

Complex notation:

$$
\mathbf{E}(z, t)=E_{0} \hat{\jmath}^{i(k z-\omega t)}
$$

with

$$
\begin{aligned}
& E_{0}=\sqrt{\left|E_{0 x}\right|^{2}+\left|E_{y 0}\right|^{2}} \\
& \hat{\jmath}=\cos \beta \widehat{\mathrm{x}}+e^{i \varepsilon} \sin \beta \widehat{\mathbf{y}}
\end{aligned}
$$

$\tan \beta=p=\frac{\left|E_{0 y}\right|}{\left|E_{0 x}\right|}$
Note β not the same as ellipse angle α
Find $\tan (2 \alpha)=\tan (2 \beta) \cos (\varepsilon)$

Choice of Basis

So far have used x, y coordinates
Problems often easier in different coords
Example:
linearly polarized light at angle α
Define $x^{\prime}=x \cos \alpha+y \sin \alpha$

$$
y^{\prime}=-x \sin \alpha+y \cos \alpha
$$

Then light polarized along x^{\prime}

$$
\mathbf{E}(z, t)=E_{0} \hat{\mathbf{x}}^{\prime} e^{i(k z-\omega t)}
$$

23

Set of unit vectors $=$ basis

Can also use complex $\hat{\jmath}^{\prime}$'s as basis
Most often use circular states

$$
\begin{aligned}
& \hat{\mathbf{e}}_{\mathcal{R}}=\frac{1}{\sqrt{2}}(\widehat{\mathrm{x}}-i \widehat{\mathbf{y}}) \\
& \hat{\mathbf{e}}_{\mathcal{L}}=\frac{1}{\sqrt{2}}(\hat{\mathrm{x}}+i \widehat{\mathbf{y}})
\end{aligned}
$$

Example: can write $\widehat{\mathrm{x}}=\frac{1}{\sqrt{2}}\left(\hat{\mathrm{e}}_{\mathcal{R}}+\widehat{\mathrm{e}}_{\mathcal{L}}\right)$
Useful if circ. polarizations are important for you

Another example: arb. elliptical state

$$
=\text { sum of linear and circular states }
$$

Say $\widehat{\jmath}=\cos \beta \widehat{\mathbf{x}}+e^{i \varepsilon} \sin \beta \widehat{\mathbf{y}}$
Then

$$
\begin{gathered}
\hat{\jmath}=\cos \beta \widehat{\mathbf{x}}+\cos \varepsilon \sin \beta \hat{\mathbf{y}}+i \sin \varepsilon \sin \beta \hat{\mathbf{y}} \\
=(\cos \beta-\sin \varepsilon \sin \beta) \widehat{\mathbf{x}}+\cos \varepsilon \sin \beta \widehat{\mathbf{y}} \\
\quad+(\sin \varepsilon \sin \beta \widehat{\mathbf{x}}+i \sin \varepsilon \sin \beta \widehat{\mathbf{y}}) \\
=(\cos \beta-\sin \varepsilon \sin \beta) \hat{\mathbf{x}}+\cos \varepsilon \sin \beta \widehat{\mathbf{y}} \\
\quad+\sqrt{2} \sin \varepsilon \sin \beta \widehat{\mathbf{e}}_{\mathcal{L}}
\end{gathered}
$$

First line: linear at

$$
\tan \alpha=\frac{j_{y}}{j_{x}}=\frac{\cos \varepsilon \sin \beta}{\cos \beta-\sin \varepsilon \sin \beta}
$$

Second line: LHC

Optical elements have simple effect in some bases, complicated in others

Useful to go back and forth

For complex bases, need orthogonality condition

Need two basis vectors $\hat{\mathbf{e}}_{1}$ and $\widehat{\mathbf{e}}_{2}$, with $\widehat{\mathbf{e}}_{1} \perp \widehat{\mathbf{e}}_{2}$
For complex vectors, \perp means $\widehat{\mathbf{e}}_{1}^{*} \cdot \widehat{\mathbf{e}}_{2}=0$
Example: if $\widehat{\mathrm{e}}_{1}=\frac{\sqrt{3}}{2} \widehat{\mathrm{x}}+i \frac{1}{2} \hat{\mathrm{y}}$

$$
\begin{aligned}
& \text { then } \widehat{\mathbf{e}}_{2}=\frac{1}{2} \widehat{\mathbf{x}}-i \frac{\sqrt{3}}{2} \widehat{\mathbf{y}} \\
& \text { since } \widehat{\mathrm{e}}_{1}^{*} \cdot \widehat{\mathbf{e}}_{2}=\frac{\sqrt{3}}{4}-\frac{\sqrt{3}}{4}=0
\end{aligned}
$$

In general, $\sin \beta \widehat{\mathbf{x}}-e^{i \varepsilon} \cos \beta \widehat{\mathbf{y}}$ is orthogonal to $\cos \beta \widehat{\mathbf{x}}+e^{i \varepsilon} \sin \beta \widehat{\mathbf{y}}$

Graphically:
Orthogonal polarizations rotated 90° and opposite sense of rotation

Question: What state is orthogonal to LHC polarization, and does it satisfy $\widehat{\mathbf{e}}^{*} \cdot \widehat{\mathbf{e}}_{\mathcal{L}}=0$?

Partially Polarized Light (Hecht 8.1.4)

Previously introduced idea of coherence
Two waves $\left|A_{1}\right| e^{i\left(k z-\omega t+\phi_{1}\right)}$ and $\left|A_{2}\right| e^{i\left(k z-\omega t+\phi_{2}\right)}$ are coherent if phase diff $\phi_{1}-\phi_{2}$ is constant

Constant $=$ constant over time scale of interest

Say single wave is coherent if ϕ_{1} is constant Most natural light sources are incoherent

Coherence affects polarization
For totally incoherent light,

$$
\begin{aligned}
& E_{x}(z, t)=\left|E_{0 x}\right| \cos \left(k z-\omega t+\phi_{x}\right) \\
& E_{y}(z, t)=\left|E_{0 y}\right| \cos \left(k z-\omega t+\phi_{y}\right)
\end{aligned}
$$

ϕ_{x} and ϕ_{y} vary randomly
All polarization effects average out: Say light is unpolarized

Light can be incoherent but polarized

$$
\text { Suppose } \begin{aligned}
E_{x}(z, t) & =\left|E_{0 x}\right| \cos (k z-\omega t+\phi) \\
E_{y}(z, t) & =\left|E_{0 y}\right| \cos (k z-\omega t+\phi+\varepsilon)
\end{aligned}
$$

with ϕ fluctuating but ε constant
Then E_{x} and E_{y} components fluctuate together

- Alternatively, could just have $E_{0 y}=0$

Either way, see polarization effects

Unpolarized light $=$
"mixture" of any two orthogonal states

Add irradiances of each, not fields
$I_{\text {tot }}=I_{1}+I_{2}$
If system transmits \hat{e}_{1} with transmittance T_{1}, \widehat{e}_{2} with transmittance T_{2}

Get $I_{\text {out }}=T_{1} I_{1}+T_{2} I_{2}$

No interference effects

Example:
sunlight $=50 \%$ linear $\|+50 \%$ linear \perp
Transmission through surface $\langle T\rangle=\frac{1}{2}\left(T_{\|}+T_{\perp}\right)$
Doesn't matter what is $\hat{\mathbf{x}}$, what is $\hat{\mathbf{y}}$

Or: sunlight $=50 \%$ RHC $+50 \%$ LHC
Suppose some material absorbs all RHC:
Get 50\% transmittance
As before, work in whatever basis is easiest

- Here, don't need to recalculate state

Connection to Quantum Mechanics
Mathematics of polarization
$=$ math of quantum two-level system
Examples:

- Electron in magnetic field \Leftarrow
- Two atomic levels coupled by field
- Single proton in NMR

Doesn't mean that light is quantum mechanical!

- means that two-level systems are classical

Apply QM understanding to light

- $\mathbf{k} \leftrightarrow \mathbf{B}$ (magnetic field)
- $\widehat{\jmath} \leftrightarrow|\psi\rangle$
- basis states \leftrightarrow basis states
- LHC \rightarrow spin up along z
- RHC \rightarrow spin down along z
- Linear polarized along $x=$ spin along x
- Unpolarized light $=$ mixture states
(w/ density matrix)
Applies to optical devices
$=$ measurement or unitary operators
Connect to photon optics at end of course

Summary:

- Linear polarization: E oscillates in plane

$$
\widehat{\jmath}=\cos \alpha \widehat{\mathbf{x}}+\sin \alpha \widehat{\mathbf{y}}
$$

- Circular polarization: E winds in helix

$$
\widehat{\jmath}=(\widehat{\mathbf{x}} \pm i \widehat{\mathbf{y}}) / \sqrt{2}
$$

- More generally, \mathbf{E} traces out ellipse

$$
\widehat{\jmath}=\cos \beta \widehat{\mathbf{x}}+e^{i \varepsilon} \sin \beta \widehat{\mathbf{y}}
$$

- Work in whatever basis is convenient - Just like QM
- Unpolarized light:
mixture of orthogonal states

