
Phys 531 Lecture 19 9 November 2004

Polarization of Light

Last time, finished Fourier optics

Saw lots of interesting applications

Next three lectures: polarization

explore vector nature of light

Today: basic ideas

No Fourier transforms required!
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Outline:

• Notation and conventions

• Polarization states

• Basis states

• Unpolarized light

• Polarization and quantum mechanics

Follow book more closely again: Chapter 8

Note, book neglects complex notation until §8.13

- we’ll use from beginning

Next time:

Generating and manipulating polarized light
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Conventions

Have been ignoring vector nature of E

- Not very important for diffraction

- Simplifies calculations

But it is important for many things

Already saw in Fresnel relations

When is polarization important?
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When can we ignore polarization?

• Imaging problems

• Interference/diffraction for beams at

small angles

When is it important?

• Transmittance/reflectance calcs

• Superposing beams at large angles

• Detailed interactions with matter:

Birefringent materials, surface effects,
atomic/molecular transitions, nonlinear op-
tics, magneto-optical effects, electro-optical
effects, . . .

Beyond this course, but common applications
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Review what we know:

Plane wave solution is

E(r, t) = E0e
i(k·r−ωt)

complex vector amplitude E0, know k · E0 = 0

Standard configuration: take k = kẑ

Then E0 = E0xx̂ + E0yŷ

Real fields are

Ex(z, t) = |E0x| cos(kz − ωt+ φx)

Ey(z, t) = |E0y| cos(kz − ωt+ φy)
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Phases φx, φy are independent

Relation between phases sets polarization

- along with amplitudes |E0x|, |E0y

Define phase difference ε = φy − φx

Write

Ex(z, t) = |E0x| cos(kz − ωt+ φ)

Ey(z, t) = |E0y| cos(kz − ωt+ φ+ ε)

don’t worry about overall phase φ
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In complex form:

Ex(z, t) = |E0x|eiφei(kz−ωt)

Ey(z, t) = |E0y|ei(φ+ε)ei(kz−ωt)

Define complex amplitude

E0 =
√

|E0x|2 + |E0y|2 eiφ

and polarization vector = Jones vector =

̂ =
|E0x|
|E0|

x̂ +
|E0y|
|E0|

eiε ŷ

Then E(z, t) = E0̂e
i(kz−ωt)
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Polarization States (Hecht 8.1)

Look at E for different ε

Take φ = 0 for simplicity

Suppose ε = 0

Then Ex(z, t) = |E0x| cos(kz − ωt)

Ey(z, t) = |E0y| cos(kz − ωt)

When Ex is maximum, so is Ey

When Ex is zero, so is Ey
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Trace E(t) in z = 0 plane:
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E oscillates along line:

state called linear polarization

In 3D, E oscillates in plane

plane called plane of polarization

Snapshot of E(z, t) looks like cosine function

lying in plane of polarization

Used linearly polarized light in original derivations

only x̂ or ŷ

More generally, allow any plane
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Complex notation:

E(z, t) = E0̂e
i(kz−ωt)

with

̂ = cosα x̂ + sinα ŷ

for α = tan−1(E0y/E0x)

y

x
α

Plane of polarization spanned by k and ̂

Question: How are polarization states with ̂ and −̂ differ-

ent?
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Another special case: ε = ±π/2
and |E0x| = |E0y|

Then Ex(z, t) = |E0x| cos(kz − ωt)

and Ey(z, t) = |E0x| cos(kz − ωt± π/2)

= ∓|E0x| sin(kz − ωt)

Plot in z = 0 plane for ε = +π/2

So Ex(z, t) = |E0x| cos(ωt)
Ey(z, t) = |E0x| sin(ωt)
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E rotates in circle

13

Called circular polarization

Note if ε = −π/2, E rotates in opposite direction

Call ε = −π/2 right-circular polarization (RCP)

ε = +π/2 left-circular polarization (LCP)

At fixed t, E(z) traces out helix = corkscrew

RCP: right-handed screw

LCP: left-handed screw
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RCP vs. LCP very easy to mix up

LCP:

• For fixed z, E rotates in counter-clockwise sense

- when light propagating toward observer

• For fixed t, E rotates in clockwise sense as z

increases

Because of sign difference in kz − ωt factor

Also, if complex convention is ei(ωt−kz)

then sign of phases reversed

Fortunately, rarely need to know which is which
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Complex notation:

E(z, t) = E0̂e
i(kz−ωt)

with

̂ =
1√
2
(x̂ − iŷ) (RCP)

̂ =
1√
2
(x̂ + iŷ) (LCP)

and E0 =
√

2E0x

Question: As E rotates, amplitude is always E0x. So why

so we have E0 =
√

2E0x?
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Linear and circular are only special polarizations

General case: elliptical polarization

Example:

|E0y| = 2|E0x| ε = π/3

Then for z = 0:

Ex(t) = |E0x| cos(ωt)
Ey(t) = 2|E0x| cos(ωt− π/3)
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Traces out ellipse:
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Equation of ellipse from |E0x|, |E0y| and ε:

E2
x

|E0x|2
+

E2
y

|E0y|2
− 2ExEy cos ε

|E0x||E0y|
= sin2 ε

Characterize by angle α and eccentricity e = a/b

x

y
a

b α
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Define p = |E0y|/|E0x|

Then angle of axes α:

tan2α =
2p cos ε

1 − p2
(Note: axis ambiguous)

and eccentricity e:

e2 =
1 + p2 +

√

1 + 2p2 cos 2ε+ p4

1 + p2 −
√

1 + 2p2 cos 2ε+ p4

For example shown, α = 73.1◦ and e = 2.48

These formulas hard to find!
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General properties:

- eccentricity = 0 for ε = 0

(linear polarization)

- eccentricity max for ε = ±π/2
(circ. if |E0x| = |E0y|)

- right-handed rotation for ε < 0

- left-handed for ε > 0
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Complex notation:

E(z, t) = E0̂e
i(kz−ωt)

with

E0 =
√

|E0x|2 + |Ey0|2

̂ = cos β x̂ + eiε sin β ŷ

tanβ = p =
|E0y|
|E0x|

Note β not the same as ellipse angle α

Find tan(2α) = tan(2β) cos(ε)
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Choice of Basis

So far have used x, y coordinates

Problems often easier in different coords

Example:

linearly polarized light at angle α

Define x′ = x cosα+ y sinα

y′ = −x sinα+ y cosα
x

y

α

E
x’

y’

Then light polarized along x′

E(z, t) = E0x̂
′ei(kz−ωt)
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Set of unit vectors = basis

Can also use complex ̂’s as basis

Most often use circular states

êR =
1√
2
(x̂ − iŷ)

êL =
1√
2
(x̂ + iŷ)

Example: can write x̂ =
1√
2
(êR + êL)

Useful if circ. polarizations are important for you
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Another example: arb. elliptical state

= sum of linear and circular states

Say ̂ = cosβ x̂ + eiε sin β ŷ

Then

̂ = cos β x̂ + cos ε sinβ ŷ + i sin ε sin β ŷ

= (cos β − sin ε sinβ) x̂ + cos ε sinβ ŷ

+ (sin ε sin β x̂ + i sin ε sin β ŷ)

= (cos β − sin ε sinβ) x̂ + cos ε sinβ ŷ

+
√

2 sin ε sinβ êL
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First line: linear at

tanα =
jy

jx
=

cos ε sinβ

cos β − sin ε sin β

Second line: LHC

Optical elements have simple effect in some bases,

complicated in others

Useful to go back and forth
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For complex bases, need orthogonality condition

Need two basis vectors ê1 and ê2, with ê1 ⊥ ê2

For complex vectors, ⊥ means ê∗1 · ê2 = 0

Example: if ê1 =

√
3

2
x̂ + i

1

2
ŷ

then ê2 =
1

2
x̂ − i

√
3

2
ŷ

since ê∗1 · ê2 =

√
3

4
−

√
3

4
= 0
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In general, sin βx̂ − eiε cosβŷ is orthogonal to

cosβx̂ + eiε sin βŷ

Graphically:

Orthogonal polarizations rotated 90◦

and opposite sense of rotation

x

y

Question: What state is orthogonal to LHC polarization,

and does it satisfy ê∗ · êL = 0?
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Partially Polarized Light (Hecht 8.1.4)

Previously introduced idea of coherence

Two waves |A1|ei(kz−ωt+φ1) and |A2|ei(kz−ωt+φ2)

are coherent if phase diff φ1 − φ2 is constant

Constant = constant over time scale of interest

Say single wave is coherent if φ1 is constant

Most natural light sources are incoherent
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Coherence affects polarization

For totally incoherent light,

Ex(z, t) = |E0x| cos(kz − ωt+ φx)

Ey(z, t) = |E0y| cos(kz − ωt+ φy)

φx and φy vary randomly

All polarization effects average out:

Say light is unpolarized
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Light can be incoherent but polarized

Suppose Ex(z, t) = |E0x| cos(kz − ωt+ φ)

Ey(z, t) = |E0y| cos(kz − ωt+ φ+ ε)

with φ fluctuating but ε constant

Then Ex and Ey components fluctuate together

- Alternatively, could just have E0y = 0

Either way, see polarization effects
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Unpolarized light =

“mixture” of any two orthogonal states

Add irradiances of each, not fields

Itot = I1 + I2

If system transmits ê1 with transmittance T1,

ê2 with transmittance T2

Get Iout = T1I1 + T2I2

No interference effects
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Example:

sunlight = 50% linear ‖ + 50% linear ⊥

Transmission through surface 〈T 〉 =
1

2
(T‖ + T⊥)

Doesn’t matter what is x̂, what is ŷ

Or: sunlight = 50% RHC + 50% LHC

Suppose some material absorbs all RHC:

Get 50% transmittance

As before, work in whatever basis is easiest

- Here, don’t need to recalculate state
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Connection to Quantum Mechanics

Mathematics of polarization

= math of quantum two-level system

Examples:

- Electron in magnetic field ⇐
- Two atomic levels coupled by field

- Single proton in NMR

Doesn’t mean that light is quantum mechanical!

- means that two-level systems are classical
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Apply QM understanding to light

• k ↔ B (magnetic field)

• ̂↔ |ψ〉
• basis states ↔ basis states

• LHC → spin up along z

• RHC → spin down along z

• Linear polarized along x = spin along x

• Unpolarized light = mixture states

(w/ density matrix)

Applies to optical devices

= measurement or unitary operators

Connect to photon optics at end of course
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Summary:

• Linear polarization: E oscillates in plane

̂ = cosα x̂ + sinα ŷ

• Circular polarization: E winds in helix

̂ = (x̂ ± iŷ)/
√

2

• More generally, E traces out ellipse

̂ = cos β x̂ + eiε sinβ ŷ

• Work in whatever basis is convenient

- Just like QM

• Unpolarized light:

mixture of orthogonal states

36


