Phys 531 Lecture 19 9 November 2004
Polarization of Light

Last time, finished Fourier optics

Saw lots of interesting applications

Next three lectures: polarization
explore vector nature of light

Today: basic ideas

No Fourier transforms required!

Outline:
e Notation and conventions
e Polarization states
e Basis states
e Unpolarized light
e Polarization and quantum mechanics

Follow book more closely again: Chapter 8

Note, book neglects complex notation until §8.13
- we'll use from beginning

Next time:
Generating and manipulating polarized light



Conventions

Have been ignoring vector nature of E
- Not very important for diffraction
- Simplifies calculations

But it is important for many things
Already saw in Fresnel relations

When is polarization important?

When can we ignore polarization?
e Imaging problems
e Interference/diffraction for beams at
small angles

When is it important?
e Transmittance/reflectance calcs
e Superposing beams at large angles
e Detailed interactions with matter:

Birefringent materials, surface effects,
atomic/molecular  transitions, nonlinear op-
tics, magneto-optical effects, electro-optical
effects, ...

Beyond this course, but common applications
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Review what we know:
Plane wave solution is
E(r,t) — Eoez’(k-r—wt)

complex vector amplitude Eg, know k- Eqg =20

Standard configuration: take k = kz
Then Eg = Eg,X + Eoyy

Real fields are

Eqy(z,t) = |Eog| cos(kz — wt + ¢z)
Ey(z,t) = |Egy| cos(kz — wt + ¢y)

Phases ¢, ¢y are independent

Relation between phases sets polarization
- along with amplitudes |Eq;|, |Eq,

Define phase difference ¢ = ¢y — ¢»
Write
Ex(z,t) = |Eg,| cos(kz — wt 4 ¢)
Ey(z,t) = |Eg,| cos(kz —wt + ¢ + )

don’'t worry about overall phase ¢



In complex form:

Ey(z,t) = | Egyle’®el(kz—wt)

Ey(z, 1) = | Egy|e'#F2) e kemet)

Define complex amplitude

2 2 i
Eo = /| Eoz|? + | Egy|? €
and polarization vector = Jones vector =
|E0y| 1€ =~

E
| Eo | Eo

7=

Then E(z,t) = Egje(kz—wt)

Polarization States (Hecht 8.1)

Look at E for different ¢
Take ¢ = 0 for simplicity

Suppose e =0
Then Ep(z,t) = |Eg,| cos(kz — wt)
Ey(z,t) = |Egy| cos(kz — wt)

When E; is maximum, so is Ey
When E; is zero, so is By



Trace E(t) in z = 0 plane:

wt=0: Y wt= 4 Y wt=mw2 Y
Egy | %
X X o X
EOx
wt = 3174: y wt=T1T y wt = 5174: y
-E
X §OX X X
................. Eqy

E oscillates along line:
state called linear polarization

In 3D, E oscillates in plane
plane called plane of polarization

Snapshot of E(z,t) looks like cosine function
lying in plane of polarization

Used linearly polarized light in original derivations
only x or y

More generally, allow any plane
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Complex notation:

E(z,t) = Egje'(F~") y
j=cosaXx+sinay O‘x

for a = tan_l(Eoy/on)

Plane of polarization spanned by k and 3

Question: How are polarization states with 3 and —j differ-

ent?
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Another special case: ¢ = £n/2
and |Egg| = |Eqy|

Then E;(z,t) = |Eg,| cos(kz — wt)

and Ey(z,t) = |Egy| cos(kz — wt +7/2)
= F|FEg,|sin(kz — wt)

Plot in z =0 plane for ¢ = +x/2
So Ex(z,t) = |Eg,| cos(wt)
Ey(z,t) = | Egy| sin(wt)
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wt=0: Y wt= 4 Y wt=m2 Y

m)(

0x

wt = 3174: y wt=T1T y wt = 5174 y

E rotates in circle
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Called circular polarization

Note if e = —7/2, E rotates in opposite direction

Call e = —x/2 right-circular polarization (RCP)
e = +mn /2 left-circular polarization (LCP)

At fixed t, E(z) traces out helix = corkscrew
RCP: right-handed screw
LCP: left-handed screw
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RCP vs. LCP very easy to mix up

LCP:
e For fixed z, E rotates in counter-clockwise sense
- when light propagating toward observer

e For fixed t, E rotates in clockwise sense as z
increases

Because of sign difference in kz — wt factor

Also, if complex convention is et(wi—k2)
then sign of phases reversed

Fortunately, rarely need to know which is which
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Complex notation:
E(z,t) = onei(k:z—wt)
with

(X —iy) (RCP)

<)
||
Nis

L
J—\/i( +iy) (LCP)

and Eg = \/§on

Question: As E rotates, amplitude is always Ep,. SO why
so we have Eg = V2Ey,?
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Linear and circular are only special polarizations
General case: elliptical polarization

Example:
|Eoyl = 2|Eogz| e=m/3

Then for z = 0:
Ex(t) = | Eoy| cos(wt)
Ey(t) = 2|Eg,| cos(wt — m/3)

17
Traces out ellipse:
wt=0: Y ot=ma Y wt=mw2 Y
= X f X 1
wt= 34 1 =1 Y. wt=s5sm4 Y
— X — X f
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Equation of ellipse from |Eg,|, |Eqy| and e:

E2 N E2  2E;Eycose Gin2
‘EOCL"Q |E0y|2 ‘EOxHEOy|

Characterize by angle a and eccentricity e = a/b
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Define p = |Eoy|/|Eos|

Then angle of axes «:

2p COS e

(Note: axis ambiguous)
1 —p?

tan2a =

and eccentricity e:

2 _ 1+ p2 4 /1 + 2p2 cos 2¢ + p*
1+ p2 — /1 + 2p2 cos 2¢ + p*

e

For example shown, a = 73.1° and e = 2.48

These formulas hard to find!
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General properties:
- eccentricity = 0 fore =20
(linear polarization)

- eccentricity max for e = £+x/2
(circ. if [Eggz| = |Eoyl)

- right-handed rotation for e < 0O
- left-handed for € > O

Complex notation:
E(z,1) = Egje'th*~"
with

Eo = \/|EOZIZ|2 + |Eyo|?

7=cosB%X+ esinBy

Note 5 not the same as ellipse angle «

Find tan(2a) = tan(2p3) cos(e)
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Choice of Basis
So far have used z,y coordinates

Problems often easier in different coords

Example:
linearly polarized light at angle « v
Xl
Define 2’ = xz cosa + ysina y E
y' = —zsina+ ycosa “a

Then light polarized along z’
E(z,t) = Eoi’ei(kz_m)
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Set of unit vectors = basis

Can also use complex 7's as basis

Most often use circular states

1
er = —=(X—-13)
V2

P

1
er = ﬁ(fi +iy)

1
Example: can write X = —Q(éR +é,)

7

Useful if circ. polarizations are important for you
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Another example: arb. elliptical state
= sum of linear and circular states

Say j=cosf3xX + e€sinpy
Then
J=cosfBX+ cosesinBy +isinesin3y
= (cos B —sinesin B) X + cosesin By
+ (sinesinBX + isinesin 8y)

= (cos3 —sinesinB) X + cosesin 3y
+V2sinesinBé,
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First line: linear at

Jy cosesing

jz  COSB —sinesin 3
Second line: LHC

tana =

Optical elements have simple effect in some bases,
complicated in others

Useful to go back and forth
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For complex bases, need orthogonality condition

Need two basis vectors €1 and eo, with e; L é»

For complex vectors, 1. means e]-é; =0

3 1
Example: ifej = —X+4+ 11—V
o) 1 > + 2y
then e X V3
= X—1——
2 > y
. e V3 3
SIince eq -ep = — =0
4 4
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In general, sin X — e cos 3y is orthogonal to
cos 3% + e*“ sin 8y

Graphically:
Orthogonal polarizations rotated 90°
and opposite sense of rotation y

iV
g

X

Question: What state is orthogonal to LHC polarization,

and does it satisfy e*-e, = 07
28



Partially Polarized Light (Hecht 8.1.4)
Previously introduced idea of coherence

Two waves |Aq|ei(kz=wt+d1) and | A,|eilkz—wi+e2)
are coherent if phase diff ¢; — ¢o is constant

Constant = constant over time scale of interest

Say single wave is coherent if ¢1 is constant

Most natural light sources are incoherent
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Coherence affects polarization
For totally incoherent light,
Ey(z,t) = |Egy| cos(kz — wt + ¢z)
Ey(z,t) = |Egy| cos(kz — wt + ¢y)
¢z and ¢y vary randomly

All polarization effects average out:
Say light is unpolarized
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Light can be incoherent but polarized

Suppose Ez(z,t) = |Eg,| cos(kz — wt + ¢)
Ey(z,t) = |Egy| cos(kz —wt + ¢ +€)

with ¢ fluctuating but £ constant

Then E; and Ey components fluctuate together

- Alternatively, could just have Eg, =0

Either way, see polarization effects
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Unpolarized light =
“mixture” of any two orthogonal states

Add irradiances of each, not fields
Itot = 11 + 1>

If system transmits e€; with transmittance Ty,
€> with transmittance 15

Get Ioyt = T111 + 121>

No interference effects
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Example:
sunlight = 50% linear || + 50% linear L

1
Transmission through surface (T) = §(T” + 7))

Doesn’'t matter what is X, what is y

Or: sunlight = 50% RHC + 50% LHC

Suppose some material absorbs all RHC:
Get 50% transmittance

As before, work in whatever basis is easiest
- Here, don't need to recalculate state
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Connection to Quantum Mechanics

Mathematics of polarization
— math of quantum two-level system

Examples:
- Electron in magnetic field <«
- Two atomic levels coupled by field
- Single proton in NMR

Doesn’t mean that light is quantum mechanical!
- means that two-level systems are classical
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Apply QM understanding to light

e k —~ B (magnetic field)
7<)
basis states «» basis states
LHC — spin up along z
RHC — spin down along z
Linear polarized along x = spin along «
Unpolarized light = mixture states

(w/ density matrix)

Applies to optical devices
— measurement or unitary operators

Connect to photon optics at end of course
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Summary:

e Linear polarization: E oscillates in plane
J=cosaxXx—+sinay

e Circular polarization: E winds in helix
7= (x+iy)/v2

e More generally, E traces out ellipse
7=cosfBX +e€sinBy

e Work in whatever basis is convenient
- Just like QM

e Unpolarized light:
mixture of orthogonal states
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