Phys 531 Lecture 19 9 November 2004
Polarization of Light
Last time, finished Fourier optics
Saw lots of interesting applications

Next three lectures: polarization explore vector nature of light

Today: basic ideas

No Fourier transforms required!

1

Outline:

- Notation and conventions
- Polarization states
- Basis states
- Unpolarized light
- Polarization and quantum mechanics

Follow book more closely again: Chapter 8

Note, book neglects complex notation until §8.13

- we'll use from beginning

Next time:

Generating and manipulating polarized light

Conventions

Have been ignoring vector nature of ${\bf E}$

- Not very important for diffraction
- Simplifies calculations

But it is important for many things Already saw in Fresnel relations

When is polarization important?

When can we ignore polarization?

- Imaging problems
- Interference/diffraction for beams at small angles

When is it important?

- Transmittance/reflectance calcs
- Superposing beams at large angles
- Detailed interactions with matter:

Birefringent materials, surface effects, atomic/molecular transitions, nonlinear optics, magneto-optical effects, electro-optical effects, ...

Beyond this course, but common applications

3

Review what we know:

Plane wave solution is

 $\mathbf{E}(\mathbf{r},t) = \mathbf{E}_0 e^{i(\mathbf{k}\cdot\mathbf{r}-\omega t)}$

complex vector amplitude $\mathbf{E}_0,$ know $\mathbf{k}\cdot\mathbf{E}_0=0$

Standard configuration: take $\mathbf{k} = k\hat{\mathbf{z}}$ Then $\mathbf{E}_0 = E_{0x}\hat{\mathbf{x}} + E_{0y}\hat{\mathbf{y}}$

Real fields are

$$E_x(z,t) = |E_{0x}| \cos(kz - \omega t + \phi_x)$$
$$E_y(z,t) = |E_{0y}| \cos(kz - \omega t + \phi_y)$$

_		
L	-	
		,
1		

Phases ϕ_x , ϕ_y are independent

Relation between phases sets polarization

- along with amplitudes $|E_{0x}|, |E_{0y}|$

Define phase difference $\varepsilon = \phi_y - \phi_x$ Write

$$E_x(z,t) = |E_{0x}| \cos(kz - \omega t + \phi)$$
$$E_y(z,t) = |E_{0y}| \cos(kz - \omega t + \phi + \varepsilon)$$

don't worry about overall phase ϕ

In complex form:

$$E_x(z,t) = |E_{0x}|e^{i\phi}e^{i(kz-\omega t)}$$
$$E_y(z,t) = |E_{0y}|e^{i(\phi+\varepsilon)}e^{i(kz-\omega t)}$$

Define complex amplitude

$$E_0 = \sqrt{|E_{0x}|^2 + |E_{0y}|^2} e^{i\phi}$$

and polarization vector = Jones vector =

$$\hat{j} = \frac{|E_{0x}|}{|E_0|} \hat{\mathbf{x}} + \frac{|E_{0y}|}{|E_0|} e^{i\varepsilon} \hat{\mathbf{y}}$$

Then
$$\mathbf{E}(z,t) = E_0 \hat{\jmath} e^{i(kz-\omega t)}$$

Polarization States (Hecht 8.1)

Look at E for different ε Take $\phi = 0$ for simplicity

Suppose $\varepsilon = 0$

Then
$$E_x(z,t) = |E_{0x}| \cos(kz - \omega t)$$

 $E_y(z,t) = |E_{0y}| \cos(kz - \omega t)$

When E_x is maximum, so is E_y When E_x is zero, so is E_y 7

Trace $\mathbf{E}(t)$ in z = 0 plane:

- E oscillates along line: state called *linear polarization*
- In 3D, E oscillates in plane plane called *plane of polarization*
- Snapshot of E(z,t) looks like cosine function lying in plane of polarization

Used linearly polarized light in original derivations only $\widehat{\mathbf{x}}$ or $\widehat{\mathbf{y}}$

More generally, allow any plane

Complex notation:

$$E(z,t) = E_0 \hat{j} e^{i(kz-\omega t)} \qquad y$$

with
$$\hat{j} = \cos \alpha \, \hat{x} + \sin \alpha \, \hat{y}$$

for $\alpha = \tan^{-1}(E_{0y}/E_{0x})$

Plane of polarization spanned by ${\bf k}$ and $\widehat{\jmath}$

Question: How are polarization states with \hat{j} and $-\hat{j}$ different?

11

Another special case:
$$\varepsilon = \pm \pi/2$$

and $|E_{0x}| = |E_{0y}|$

Then
$$E_x(z,t) = |E_{0x}| \cos(kz - \omega t)$$

and $E_y(z,t) = |E_{0x}| \cos(kz - \omega t \pm \pi/2)$
 $= \mp |E_{0x}| \sin(kz - \omega t)$

Plot in z = 0 plane for $\varepsilon = +\pi/2$ So $E_x(z,t) = |E_{0x}| \cos(\omega t)$ $E_y(z,t) = |E_{0x}| \sin(\omega t)$


```
13
```

Called circular polarization

Note if $\varepsilon = -\pi/2$, E rotates in opposite direction

- Call $\varepsilon = -\pi/2$ right-circular polarization (RCP) $\varepsilon = +\pi/2$ left-circular polarization (LCP)
- At fixed t, E(z) traces out helix = corkscrew RCP: right-handed screw LCP: left-handed screw

RCP vs. LCP very easy to mix up

LCP:

For fixed z, E rotates in counter-clockwise sense
 when light propagating toward observer

• For fixed t, \mathbf{E} rotates in clockwise sense as z increases

Because of sign difference in $kz - \omega t$ factor

Also, if complex convention is $e^{i(\omega t - kz)}$ then sign of phases reversed

Fortunately, rarely need to know which is which

15

Complex notation:

$$\mathbf{E}(z,t) = E_0 \hat{\jmath} e^{i(kz - \omega t)}$$

with

$$\hat{j} = \frac{1}{\sqrt{2}} (\hat{\mathbf{x}} - i\hat{\mathbf{y}}) \qquad (\mathsf{RCP})$$
$$\hat{j} = \frac{1}{\sqrt{2}} (\hat{\mathbf{x}} + i\hat{\mathbf{y}}) \qquad (\mathsf{LCP})$$
and $E_0 = \sqrt{2}E_{0x}$

Question: As E rotates, amplitude is always E_{0x} . So why so we have $E_0 = \sqrt{2}E_{0x}$?

Linear and circular are only special polarizations

General case: *elliptical polarization*

Example:

 $|E_{0y}| = 2|E_{0x}| \qquad \varepsilon = \pi/3$

Then for
$$z = 0$$
:
 $E_x(t) = |E_{0x}| \cos(\omega t)$
 $E_y(t) = 2|E_{0x}| \cos(\omega t - \pi/3)$

1	7
Т	1

Traces out ellipse:

Equation of ellipse from $|E_{0x}|$, $|E_{0y}|$ and ε :

$$\frac{E_x^2}{|E_{0x}|^2} + \frac{E_y^2}{|E_{0y}|^2} - \frac{2E_x E_y \cos \varepsilon}{|E_{0x}||E_{0y}|} = \sin^2 \varepsilon$$

Characterize by angle α and eccentricity e=a/b

1	9	
_	-	

Define $p = |E_{0y}|/|E_{0x}|$

Then angle of axes α :

$$\tan 2\alpha = \frac{2p\cos\varepsilon}{1-p^2}$$
 (Note: axis ambiguous)

and eccentricity e:

$$e^{2} = \frac{1 + p^{2} + \sqrt{1 + 2p^{2}\cos 2\varepsilon + p^{4}}}{1 + p^{2} - \sqrt{1 + 2p^{2}\cos 2\varepsilon + p^{4}}}$$

For example shown, $\alpha = 73.1^{\circ}$ and e = 2.48These formulas hard to find! General properties:

- eccentricity = 0 for $\varepsilon = 0$ (linear polarization)
- eccentricity max for $\varepsilon = \pm \pi/2$ (circ. if $|E_{0x}| = |E_{0y}|$)
- right-handed rotation for $\varepsilon < 0$
- left-handed for $\varepsilon > 0$

0	1
~	т

Complex notation:

$$\mathbf{E}(z,t) = E_0 \hat{\jmath} e^{i(kz - \omega t)}$$

with

$$E_0 = \sqrt{|E_{0x}|^2 + |E_{y0}|^2}$$
$$\hat{j} = \cos\beta\,\hat{\mathbf{x}} + e^{i\varepsilon}\sin\beta\,\hat{\mathbf{y}}$$
$$\tan\beta = p = \frac{|E_{0y}|}{|E_{0x}|}$$

Note β not the same as ellipse angle α

Find $tan(2\alpha) = tan(2\beta) cos(\varepsilon)$

Choice of Basis

So far have used x, y coordinates Problems often easier in different coords

Set of unit vectors = *basis*

Can also use complex \hat{j} 's as basis Most often use circular states

$$\hat{\mathbf{e}}_{\mathcal{R}} = \frac{1}{\sqrt{2}}(\hat{\mathbf{x}} - i\hat{\mathbf{y}})$$
$$\hat{\mathbf{e}}_{\mathcal{L}} = \frac{1}{\sqrt{2}}(\hat{\mathbf{x}} + i\hat{\mathbf{y}})$$

Example: can write $\hat{x} = \frac{1}{\sqrt{2}}(\hat{e}_{\mathcal{R}} + \hat{e}_{\mathcal{L}})$

Useful if circ. polarizations are important for you

Another example: arb. elliptical state

= sum of linear and circular states

Say
$$\hat{\jmath} = \cos \beta \, \hat{\mathbf{x}} + e^{i\varepsilon} \sin \beta \, \hat{\mathbf{y}}$$

Then

$$\hat{j} = \cos\beta \,\hat{\mathbf{x}} + \cos\varepsilon \sin\beta \,\hat{\mathbf{y}} + i\sin\varepsilon \sin\beta \,\hat{\mathbf{y}}$$
$$= (\cos\beta - \sin\varepsilon \sin\beta) \,\hat{\mathbf{x}} + \cos\varepsilon \sin\beta \,\hat{\mathbf{y}}$$
$$+ (\sin\varepsilon \sin\beta \,\hat{\mathbf{x}} + i\sin\varepsilon \sin\beta \,\hat{\mathbf{y}})$$
$$= (\cos\beta - \sin\varepsilon \sin\beta) \,\hat{\mathbf{x}} + \cos\varepsilon \sin\beta \,\hat{\mathbf{y}}$$
$$+ \sqrt{2}\sin\varepsilon \sin\beta \,\hat{\mathbf{e}}_{\mathcal{L}}$$

First line: linear at

$$\tan \alpha = \frac{j_y}{j_x} = \frac{\cos \varepsilon \sin \beta}{\cos \beta - \sin \varepsilon \sin \beta}$$
Second line: LHC

Optical elements have simple effect in some bases, complicated in others

Useful to go back and forth

For complex bases, need orthogonality condition

Need two basis vectors \hat{e}_1 and \hat{e}_2 , with $\hat{e}_1 \perp \hat{e}_2$ For complex vectors, \perp means $\hat{e}_1^* \cdot \hat{e}_2 = 0$

Example: if
$$\hat{\mathbf{e}}_1 = \frac{\sqrt{3}}{2}\hat{\mathbf{x}} + i\frac{1}{2}\hat{\mathbf{y}}$$

then $\hat{\mathbf{e}}_2 = \frac{1}{2}\hat{\mathbf{x}} - i\frac{\sqrt{3}}{2}\hat{\mathbf{y}}$
since $\hat{\mathbf{e}}_1^* \cdot \hat{\mathbf{e}}_2 = \frac{\sqrt{3}}{4} - \frac{\sqrt{3}}{4} = 0$

In general, $\sin \beta \hat{\mathbf{x}} - e^{i\varepsilon} \cos \beta \hat{\mathbf{y}}$ is orthogonal to $\cos \beta \hat{\mathbf{x}} + e^{i\varepsilon} \sin \beta \hat{\mathbf{y}}$

Graphically:

Question: What state is orthogonal to LHC polarization, and does it satisfy $\hat{e}^* \cdot \hat{e}_{\mathcal{L}} = 0$?

27

Partially Polarized Light (Hecht 8.1.4) Previously introduced idea of coherence Two waves $|A_1|e^{i(kz-\omega t+\phi_1)}$ and $|A_2|e^{i(kz-\omega t+\phi_2)}$ are *coherent* if phase diff $\phi_1 - \phi_2$ is constant Constant = constant over time scale of interest

Say single wave is coherent if ϕ_1 is constant Most natural light sources are incoherent

29

Coherence affects polarization

For totally incoherent light,

$$E_x(z,t) = |E_{0x}| \cos(kz - \omega t + \phi_x)$$
$$E_y(z,t) = |E_{0y}| \cos(kz - \omega t + \phi_y)$$

 ϕ_x and ϕ_y vary randomly

All polarization effects average out: Say light is *unpolarized* Light can be incoherent but polarized

Suppose
$$E_x(z,t) = |E_{0x}| \cos(kz - \omega t + \phi)$$

 $E_y(z,t) = |E_{0y}| \cos(kz - \omega t + \phi + \varepsilon)$

with ϕ fluctuating but ε constant

Then E_x and E_y components fluctuate together

- Alternatively, could just have $E_{0y} = 0$

Either way, see polarization effects

```
31
```

```
Unpolarized light = "mixture" of any two orthogonal states
```

Add irradiances of each, not fields

 $I_{\rm tot} = I_1 + I_2$

If system transmits \hat{e}_1 with transmittance T_1 , \hat{e}_2 with transmittance T_2 Get $I_{out} = T_1I_1 + T_2I_2$

No interference effects

Example: sunlight = 50% linear $\parallel +$ 50% linear \perp

Transmission through surface $\langle T \rangle = \frac{1}{2}(T_{\parallel} + T_{\perp})$ Doesn't matter what is $\hat{\mathbf{x}}$, what is $\hat{\mathbf{y}}$

Or: sunlight = 50% RHC + 50% LHC

Suppose some material absorbs all RHC: Get 50% transmittance

As before, work in whatever basis is easiest - Here, don't need to recalculate state

33

Connection to Quantum Mechanics

Mathematics of polarization

= math of quantum two-level system

Examples:

- Electron in magnetic field \Leftarrow
- Two atomic levels coupled by field
- Single proton in NMR

Doesn't mean that light is quantum mechanical!

- means that two-level systems are classical

Apply QM understanding to light

- $\mathbf{k} \leftrightarrow \mathbf{B}$ (magnetic field)
- $\hat{\jmath} \leftrightarrow |\psi\rangle$
- basis states \leftrightarrow basis states
- LHC \rightarrow spin up along z
- RHC \rightarrow spin down along z
- Linear polarized along x = spin along x
- Unpolarized light = mixture states (w/ density matrix)

Applies to optical devices

= measurement or unitary operators

Connect to photon optics at end of course

35

Summary:

- Linear polarization: E oscillates in plane $\hat{j} = \cos \alpha \, \hat{\mathbf{x}} + \sin \alpha \, \hat{\mathbf{y}}$
- Circular polarization: E winds in helix $\hat{j} = (\hat{\mathbf{x}} \pm i\hat{\mathbf{y}})/\sqrt{2}$
- More generally, E traces out ellipse $\hat{j} = \cos \beta \, \hat{\mathbf{x}} + e^{i\varepsilon} \sin \beta \, \hat{\mathbf{y}}$
- Work in whatever basis is convenient
 Just like QM
- Unpolarized light: mixture of orthogonal states