Phys $531 \quad$ Lecture 2 September 2004

Electromagnetic Theory (Hecht Ch. 3)
Last time, talked about waves in general

- wave equation: $\nabla^{2} \psi(\mathbf{r}, t)=\frac{1}{v^{2}} \frac{\partial^{2} \psi}{\partial t^{2}}$
$\psi=$ amplitude of disturbance of medium

For light, "medium" = EM field

This time:

- derive wave equation from Maxwell's Equations
- study properties of EM waves in vacuum

Next time:

- consider EM waves in matter

Maxwell's Equations:
Basic postulates of electromagnetism
Physical quantities:
Electric field $\quad \mathbf{E}(\mathbf{r}, t) \quad$ (Volts/m)
Magnetic field $\quad \mathbf{B}(\mathbf{r}, t) \quad$ (Tesla)
Charge density $\rho(\mathbf{r}, t) \quad$ (Coulombs $/ \mathrm{m}^{3}$)
Current density $\mathbf{J}(\mathbf{r}, t)$ (Amperes $/ \mathrm{m}^{2}$)
Gauss's Laws (charge produces a field):

$$
\begin{aligned}
& \nVdash \mathbf{E} \cdot \mathbf{d S}=\frac{1}{\epsilon_{0}} \iiint \rho d V \quad \oiint \mathbf{B} \cdot \mathbf{d S}=0 \\
& \epsilon_{0}=\underset{\text { permittivity of free space }=8.8 \mathrm{pF} / \mathrm{m}}{ } \begin{array}{l}
\text { (from capacitor measurements) }
\end{array}
\end{aligned}
$$

Faraday's Law (changing B produces E):

$$
\oint \mathbf{E} \cdot \mathrm{d} \ell=-\iint \frac{\partial \mathbf{B}}{\partial t} \cdot \mathrm{dS}
$$

Ampere's Law (current, changing \mathbf{E} produce \mathbf{B}):

$$
\begin{gathered}
\oint \mathbf{B} \cdot \mathbf{d} \ell=\mu_{0} \iint\left(\mathbf{J}+\epsilon_{0} \frac{\partial \mathbf{E}}{\partial t}\right) \cdot \mathbf{d S} \\
\mu_{0}=\text { permeability of free space } \\
=1.3 \mu \mathrm{H} / \mathrm{m} \equiv 4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m}
\end{gathered}
$$

These are integral form of Maxwell's equations

Will be more useful in differential form
Use Gauss's Theorem: for any $\mathbf{F}(\mathbf{r})$

$$
\oiint \mathbf{F} \cdot \mathrm{dS}=\iiint \nabla \cdot \mathbf{F} d V
$$

Here $\nabla \equiv \hat{\mathbf{x}} \frac{\partial}{\partial x}+\hat{\mathbf{y}} \frac{\partial}{\partial y}+\hat{\mathbf{z}} \frac{\partial}{\partial z}$
Also Stoke's Theorem: $\quad \oint \mathbf{F} \cdot \mathbf{d} \ell=\iint(\nabla \times \mathbf{F}) \cdot \mathrm{dS}$

- Analogous to ordinary calculus:

$$
f\left(x_{2}\right)-f\left(x_{1}\right)=\int_{x_{1}}^{x_{2}} \frac{d f}{d x} d x
$$

function on boundary integral of derivative

Apply to Maxwell:

$$
\begin{aligned}
\oiint \mathbf{E} \cdot \mathbf{d S} & =\iiint \nabla \cdot \mathbf{E} d V \\
& =\frac{1}{\epsilon_{0}} \iiint \rho d V
\end{aligned}
$$

True for any volume V, so at each point \mathbf{r}

$$
\nabla \cdot \mathbf{E}(\mathbf{r})=\frac{1}{\epsilon_{0}} \rho(\mathbf{r})
$$

Similarly, get $\nabla \cdot \mathbf{B}=0$

Also, for any surface S,

$$
\oint \mathbf{E} \cdot \mathbf{d} \ell=\iint \nabla \times \mathbf{E} \cdot \mathbf{d S}=-\iint \frac{\partial \mathbf{B}}{\partial t} \cdot \mathrm{dS}
$$

so

$$
\nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t}
$$

and similarly

$$
\nabla \times \mathbf{B}=\mu_{0} \mathbf{J}+\epsilon_{0} \mu_{0} \frac{\partial \mathbf{E}}{\partial t}
$$

These are differential form of Maxwell's equations

Light Waves (Hecht 3.2)

Light propagates in vacuum: $\rho=\mathbf{J}=0$
Maxwell equations become:

$$
\begin{align*}
& \nabla \cdot \mathbf{E}=0 \tag{1}\\
& \nabla \cdot \mathbf{B}=0 \tag{2}\\
& \nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t} \tag{3}\\
& \nabla \times \mathbf{B}=\epsilon_{0} \mu_{0} \frac{\partial \mathbf{E}}{\partial t} \tag{4}
\end{align*}
$$

Where's the wave equation?

Derivation of wave equation

Take $\partial / \partial t$ of (4):

$$
\frac{\partial}{\partial t}(\nabla \times \mathbf{B})=\epsilon_{0} \mu_{0} \frac{\partial^{2} \mathbf{E}}{\partial t^{2}}
$$

or

$$
\nabla \times \frac{\partial \mathbf{B}}{\partial t}=\epsilon_{0} \mu_{0} \frac{\partial^{2} \mathbf{E}}{\partial t^{2}}
$$

Then using (3):

$$
-\nabla \times(\nabla \times \mathbf{E})=\epsilon_{0} \mu_{0} \frac{\partial^{2} \mathbf{E}}{\partial t^{2}}
$$

Need to simplify $\nabla \times(\nabla \times \mathbf{E})$

Cross product rule:

$$
\mathrm{a} \times(\mathrm{b} \times \mathrm{c})=\mathrm{b}(\mathrm{a} \cdot \mathrm{c})-(\mathrm{a} \cdot \mathrm{~b}) \mathbf{c}
$$

so

$$
\nabla \times(\nabla \times \mathbf{E})=\nabla(\nabla \cdot \mathbf{E})-(\nabla \cdot \nabla) \mathbf{E}
$$

But $\nabla \cdot \mathbf{E}=0$, and $\nabla \cdot \nabla=\nabla^{2}$, so

$$
\nabla^{2} \mathbf{E}=\epsilon_{0} \mu_{0} \frac{\partial^{2} \mathbf{E}}{\partial t^{2}}
$$

wave equation, $v=\left(\epsilon_{0} \mu_{0}\right)^{-1 / 2}$

Similarly, take $\partial / \partial t$ of (3), end up with

$$
\nabla^{2} \mathbf{B}=\epsilon_{0} \mu_{0} \frac{\partial^{2} \mathbf{B}}{\partial t^{2}}
$$

So expect EM waves to exist. Do they correspond to light?

Compare speeds: $\left(\epsilon_{0} \mu_{0}\right)^{-1 / 2}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$ Measured light speed $c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$

Conclude light is EM wave

EM waves are vector waves Previously considered scalar waves

Actually six coupled wave equations:

$$
\left(E_{x}, E_{y}, E_{z}, B_{x}, B_{y}, B_{z}\right)
$$

Components must still obey Maxwell's equations example:

$$
\frac{\partial B_{x}}{\partial x}+\frac{\partial B_{y}}{\partial y}+\frac{\partial B_{z}}{\partial z}=0
$$

and

$$
\frac{\partial E_{x}}{\partial y}-\frac{\partial E_{y}}{\partial x}=-\frac{\partial B_{z}}{\partial t}
$$

Can simplify for plane wave solutions:

$$
\begin{aligned}
& \mathbf{E}(\mathbf{r}, t)=\mathbf{E}_{0} e^{i(\mathbf{k} \cdot \mathbf{r}-\omega t)} \\
& \mathbf{B}(\mathbf{r}, t)=\mathbf{B}_{0} e^{i(\mathbf{k} \cdot \mathbf{r}-\omega t)}
\end{aligned}
$$

with $\mathbf{E}_{0}, \mathbf{B}_{0}=$ complex vector amplitudes
Sometimes confusing, so write out:

$$
\mathbf{E}_{0}=\left|E_{0 x}\right| e^{i \phi_{x}} \widehat{\mathbf{x}}+\left|E_{0 y}\right| e^{i \phi_{y}} \widehat{\mathbf{y}}+\left|E_{0 z}\right| e^{i \phi_{z}} \widehat{\mathbf{z}}
$$

and actual wave is

$$
\begin{aligned}
\mathbf{E}= & \left|E_{0 x}\right| \widehat{\mathbf{x}} \cos \left(\mathbf{k} \cdot \mathbf{r}-\omega t+\phi_{x}\right) \\
& +\left|E_{0 y}\right| \hat{\mathbf{y}} \cos \left(\mathbf{k} \cdot \mathbf{r}-\omega t+\phi_{y}\right) \\
& +\left|E_{0 z}\right| \hat{\mathbf{z}} \cos \left(\mathbf{k} \cdot \mathbf{r}-\omega t+\phi_{z}\right)
\end{aligned}
$$

Plane Waves

Have $\frac{\partial \mathbf{E}}{\partial x}=\frac{\partial}{\partial x} \mathbf{E}_{0} e^{i\left(k_{x} x+k_{y} y+k_{z} z-\omega t\right)}$

$$
\begin{aligned}
& =i k_{x} \mathbf{E}_{0} e^{i\left(k_{x} x+k_{y} y+k_{z} z-\omega t\right)} \\
& =i k_{x} \mathbf{E}(\mathbf{r}, t)
\end{aligned}
$$

Also $\frac{\partial \mathbf{E}}{\partial y}=i k_{y} \mathbf{E}, \quad \frac{\partial \mathbf{E}}{\partial z}=i k_{z} \mathbf{E}$ and $\frac{\partial \mathbf{B}}{\partial x}=i k_{x} \mathbf{B}, \quad \frac{\partial \mathbf{B}}{\partial y}=i k_{y} \mathbf{B}, \quad \frac{\partial \mathbf{B}}{\partial z}=i k_{z} \mathbf{B}$

Thus, for plane waves, can replace

$$
\nabla=\widehat{\mathbf{x}} \frac{\partial}{\partial x}+\widehat{\mathbf{y}} \frac{\partial}{\partial y}+\hat{\mathbf{z}} \frac{\partial}{\partial z} \rightarrow i\left(\widehat{\mathbf{x}} k_{x}+\widehat{\mathbf{y}} k_{y}+\widehat{\mathbf{z}} k_{z}\right)=i \mathbf{k}
$$

Also, $\frac{\partial}{\partial t} \rightarrow-i \omega$
So wave equation becomes

$$
\nabla^{2} \mathbf{E}=\frac{1}{c^{2}} \frac{\partial^{2} \mathbf{E}}{\partial t^{2}} \rightarrow-k^{2} \mathbf{E}=-\frac{\omega^{2}}{c^{2}} \mathbf{E}
$$

Solution if $k=\omega / c$, as before.

Maxwell equations become

$$
\begin{array}{ll}
\mathbf{k} \cdot \mathbf{E}=0 & \mathbf{k} \cdot \mathbf{B}=0 \\
\mathbf{k} \times \mathbf{E}=\omega \mathbf{B} & \mathbf{k} \times \mathbf{B}=-\frac{\omega}{c^{2}} \mathbf{E}
\end{array}
$$

Exponentials factors $e^{i(\mathbf{k} \cdot \mathbf{r}-\omega t)}$ drop out, so

$$
\begin{array}{ll}
\hat{\mathbf{k}} \cdot \mathbf{E}_{0}=0 & \hat{\mathbf{k}} \cdot \mathbf{B}_{0}=0 \\
\hat{\mathbf{k}} \times \mathbf{E}_{0}=c \mathbf{B}_{0} & \hat{\mathbf{k}} \times \mathbf{B}_{0}=-\frac{1}{c} \mathbf{E}_{0}
\end{array}
$$

with $\widehat{\mathbf{k}}=$ propagation direction

Dot products indicate $\mathbf{E}_{0}, \mathbf{B}_{0} \perp \mathbf{k}$

- Say EM waves are transverse

Cross products indicate $\mathbf{B}_{0}=\frac{1}{c} \widehat{\mathbf{k}} \times \mathbf{E}_{0}$

- So $\mathbf{B} \perp \mathbf{E}$ as well
- $\left|\mathbf{B}_{0}\right|=\left|\mathbf{E}_{0}\right| / c$

So ($\mathbf{E}, \mathbf{B}, \mathbf{k}$) form orthogonal basis

Picture: (snapshot at fixed $t ; \widehat{\mathbf{k}}=\widehat{\mathbf{x}}$)

17

Question: If a wave has \mathbf{E} along $\hat{\mathbf{x}}$ and \mathbf{B} along $\hat{\mathbf{z}}$, what is the direction of propagation?

Question: How would my ‘snapshot' picture evolve in time?

Frequencies (Hecht 3.6)

EM waves observed over large range of ω :

$\nu(\mathrm{Hz})$	λ	Name
$<10^{5}$	$>3000 \mathrm{~m}$	ELF wave
$10^{5}-10^{9}$	$3000 \mathrm{~m}-30 \mathrm{~cm}$	radio wave
$10^{9}-10^{11}$	$30 \mathrm{~cm}-3 \mathrm{~mm}$	microwave
$10^{11}-10^{13}$	$3 \mathrm{~mm}-30 \mu \mathrm{~m}$	terahertz
$10^{13}-4 \times 10^{14}$	$30 \mu \mathrm{~m}-750 \mathrm{~nm}$	infrared
$4-8 \times 10^{14}$	$750-375 \mathrm{~nm}$	visible light
$8 \times 10^{14}-10^{16}$	$375-30 \mathrm{~nm}$	ultraviolet
$10^{16}-10^{19}$	$30 \mathrm{~nm}-30 \mathrm{pm}$	\times-rays
$>10^{19}$	$<30 \mathrm{pm}$	gamma rays

Optics particularly deals with "light:" infrared to ultraviolet

Lower ν : approximations not valid
ray optics fails wave approximations fail

Higher ν : quantum effects important wave effects hard to see
ray optics OK, but no optical materials

Properties of plane waves

Sometimes write $\mathrm{E}_{0}=E_{0} \hat{\jmath}$ with $|\hat{\jmath}|=1$

- $E_{0}=$ complex amplitude (V / m)
- $\hat{\jmath}=$ polarization vector $=$ Jones vector
- More on polarization later
- Amplitude related to energy in wave: discuss now

General EM energy density $\left(\mathrm{J} / \mathrm{m}^{3}\right)$:

$$
u(\mathbf{r})=\frac{\epsilon_{0}}{2}|\mathbf{E}|^{2}+\frac{1}{2 \mu_{0}}|\mathbf{B}|^{2}
$$

Energy in volume $V=\iiint_{V} u(\mathbf{r}) d V$

For plane wave $|\mathbf{B}|=|\mathbf{E}|$ c. So

$$
\begin{aligned}
u & =\frac{\epsilon_{0}}{2}|\mathbf{E}|^{2}+\frac{1}{2 \mu_{0} c^{2}}|\mathbf{E}|^{2} \\
& =\frac{\epsilon_{0}}{2}|\mathbf{E}|^{2}+\frac{\epsilon_{0}}{2}|\mathbf{E}|^{2}=\epsilon_{0}|\mathbf{E}|^{2}
\end{aligned}
$$

But here E refers to real electric field

If $\mathbf{E}=\operatorname{Re}\left[E_{0} \hat{\jmath} e^{i(\mathbf{k} \cdot \mathbf{r}-\omega t)}\right]$, then really

$$
\begin{aligned}
\mathbf{E}= & \left|E_{0 x}\right| \hat{\mathbf{x}} \cos \left(\mathbf{k} \cdot \mathbf{r}-\omega t+\phi_{x}\right) \\
& +\left|E_{0 y}\right| \hat{\mathbf{y}} \cos \left(\mathbf{k} \cdot \mathbf{r}-\omega t+\phi_{y}\right) \\
& +\left|E_{0 z}\right| \hat{\mathbf{z}} \cos \left(\mathbf{k} \cdot \mathbf{r}-\omega t+\phi_{z}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
u= & \left|E_{0 x}\right|^{2} \cos ^{2}\left(\mathbf{k} \cdot \mathbf{r}-\omega t+\phi_{x}\right) \\
& +\left|E_{0 y}\right|^{2} \cos ^{2}\left(\mathbf{k} \cdot \mathbf{r}-\omega t+\phi_{y}\right) \\
& +\left|E_{0 z}\right|^{2} \cos ^{2}\left(\mathbf{k} \cdot \mathbf{r}-\omega t+\phi_{z}\right)
\end{aligned}
$$

Energy oscillates in time.

For light, oscillation is rapid: usually average over many periods
Average of $\cos ^{2}()$ over many periods $=\frac{1}{2}$
So time-average $\langle u\rangle=\frac{\epsilon_{0}}{2}\left(\left|E_{0 x}\right|^{2}+\left|E_{0 y}\right|^{2}+\left|E_{0 z}\right|^{2}\right)$
In terms of complex fields, $\quad\langle u\rangle=\frac{\epsilon_{0}}{2}|\mathbf{E}|^{2}$
where $|\mathbf{E}|^{2}=\mathbf{E} \cdot \mathbf{E}^{*}=\left|E_{0 x}\right|^{2}+\left|E_{0 y}\right|^{2}+\left|E_{0 z}\right|^{2}$

Question: What is the total energy in a plane wave with amplitude E_{0} ?

Also interested in energy flow:

Use Poynting vector $\quad \mathbf{S}=\frac{1}{\mu_{0}} \mathbf{E} \times \mathbf{B}$
Can show that

$$
W=\iint_{\Sigma} \mathbf{S} \cdot \mathrm{d} \Sigma
$$

is energy per unit time crossing surface Σ

Units of S are W / m^{2}

Plane waves: $\mathbf{B}_{0}=\frac{1}{c} \widehat{\mathbf{k}} \times \mathbf{E}_{0}$, so

$$
\begin{aligned}
\mathbf{S}=\frac{1}{\mu_{0} c} \widehat{\mathbf{k}} & \left(\left|E_{0 x}\right|^{2} \cos ^{2}\left(\mathbf{k} \cdot \mathbf{r}-\omega t+\phi_{x}\right)\right. \\
& +\left|E_{0 y}\right|^{2} \cos ^{2}\left(\mathbf{k} \cdot \mathbf{r}-\omega t+\phi_{y}\right) \\
& +\left|E_{0 z}\right|^{2} \cos ^{2}\left(\mathbf{k} \cdot \mathbf{r}-\omega t+\phi_{z}\right)
\end{aligned}
$$

Direction of propagation $\widehat{\mathbf{k}}$
$=$ direction of energy flow $\widehat{\mathbf{S}}$
Question: What do you think $\mathbf{S}(\mathbf{r})$ looks like for a spherical wave?

Define irradiance (aka intensity) $=$ time-average of magnitude of S

$$
I=\langle | \mathbf{S}| \rangle=\frac{1}{2 \mu_{0} c}\left|E_{0}\right|^{2}=\frac{1}{2 \eta_{0}}\left|\mathbf{E}_{0}\right|^{2}
$$

where $\eta_{0} \equiv\left(\mu_{0} / \epsilon_{0}\right)^{1 / 2}=377 \Omega$
"impedance of free space"

Units check: $\left(\mathrm{W} / \mathrm{m}^{2}\right)=(\mathrm{V} / \mathrm{m})^{2} / \Omega$
(Recall $P=V^{2} / R$ from electronics)
I is most common measure of optical field strength
$\underset{\text { (implicit time average!) }}{\text { In terms of complex fields: }} \mathbf{S}=\frac{1}{2 \mu_{0}} \mathbf{E} \times \mathbf{B}^{*}$

Poynting vector gives other properties too:

- Energy density $\langle u\rangle=\frac{|\mathbf{S}|}{c}$
- Linear momentum $\langle\mathbf{p}\rangle=\frac{1}{c^{2}} \iiint \mathbf{S} d V$
- Angular momentum $\langle\mathbf{L}\rangle=\frac{1}{c^{2}} \iiint \mathbf{r} \times \mathbf{S} d V$

Summary:

- Light is EM wave
- Coupled E, B fields
- Plane waves, complex vector amplitudes
- Irradiance $I=\frac{1}{2 \eta_{0}}\left|\mathbf{E}_{0}\right|^{2}\left(\mathrm{~W} / \mathrm{m}^{2}\right)$

