Phys 531 Lecture 20

11 November 2004

Polarizers and Retarders

Last time, discussed basics of polarization

Linear, circular, elliptical states

Describe by polarization vector $\hat{\jmath}$

Today:

Describe elements used to manipulate polarization

1

Outline:

- Polarizers
 - Reflection, scattering, dichroism
 - Calculations with polarizers
- Birefringence
- Retarders

Next time: Jones calculus

- powerful tool for doing calculations
- will be helpful for hw

Polarizers (Hecht 8.2)

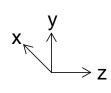
Most natural light sources are unpolarized

Obtain polarized light with polarizer

= "filter" passing only one polarization state

Usually transmit linear polarization

Plane of polarization given by transmission axis



3

Ideal polarizer:

Transmission for $\hat{j} \parallel axis = 1$ Transmission for $\hat{j} \perp axis = 0$

If axis at angle θ , write $\mathbf{a} = \cos \theta \, \hat{\mathbf{x}} + \sin \theta \, \hat{\mathbf{y}}$

If incident light has polarization $\hat{\jmath}$: transmit component of $\hat{\jmath} \parallel \mathbf{a} : \hat{\jmath}^* \cdot \mathbf{a}$

So
$$T = |\hat{\jmath}^* \cdot \mathbf{a}|^2$$

If $\hat{\jmath}$ linearly polarized $\hat{\jmath} = \cos \alpha \, \hat{\mathbf{x}} + \sin \alpha \, \hat{\mathbf{y}}$ Then $\hat{\jmath}^* \cdot \mathbf{a} = \hat{\jmath} \cdot \mathbf{a} = \cos \theta \cos \alpha + \sin \theta \sin \alpha$ $= \cos(\theta - \alpha)$ Gives Malus's Law:

For linear polarization incident on polarizer, $I_{\text{out}} = I_{\text{in}} \cos^2(\theta - \alpha)$

 $\theta-\alpha=$ angle difference between transmission axis and incident plane of polarization

But $T = |\hat{\jmath}^* \cdot \mathbf{a}|^2$ is more general works for any incident polarization state

Question: Could a be complex? What would it mean if it were?

5

Example:

If $\hat{\jmath}_{\text{inc}} = \hat{\mathbf{e}}_{\mathcal{R}} = \frac{\hat{\mathbf{x}} - i\hat{\mathbf{y}}}{\sqrt{2}}$, what is transmission through linear polarizer at angle θ ?

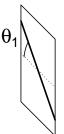
Have
$$\hat{\jmath}^* \cdot \mathbf{a} = \frac{\cos \theta + i \sin \theta}{\sqrt{2}} = \frac{1}{\sqrt{2}} e^{i\theta}$$

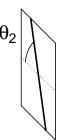
So
$$T = \frac{1}{2} |e^{i\theta}|^2 = \frac{1}{2}$$
 independent of θ

Makes sense, circ polarization symmetric in heta

Note, light exitting ideal polarizer has $\hat{\jmath}_{\text{out}} = \mathbf{a}$

If two polarizers: first at θ_1 , second at θ_2





Output of first = polarized along θ_1 Transmission of second = $\cos^2(\theta_2 - \theta_1)$

7

Real polarizers aren't perfect:

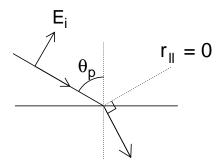
- Transmission for $\hat{\jmath} \parallel \mathbf{a} = T_0 < 1$ (loss)
- Transmission for $\hat{\jmath} \perp \mathbf{a} = \epsilon > 0$ (leakage)
- Output light not exactly polarized along a (rarely specified)

Values depend on type of polarizer

Discuss types of polarizers

Constructing Polarizers (Hecht 8.3–8.6)

Already know one way to polarize light: use Brewster's angle



When TM polarized light incident at angle $\theta_p = \tan^{-1}(n_t/n_i)$

$$\text{Get } r_{||} = 0$$

9

Two ways to make polarizer:

Use reflected light: get ⊥ component

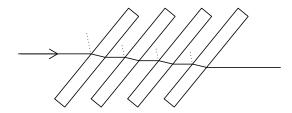
Then loss is very high:

- glass, get $R_{\perp} \approx 0.2
ightarrow$ lose 80%

Also, leakage is fairly high:

- hard to control angle accurately
- Better: use transmitted light and many surfaces

Pile of plates polarizer:



Each surface transmits all of I_{\parallel} and fraction T_{\perp} of I_{\perp} for glass, $T_{\perp}\approx$ 0.8

For N plates, total \perp transmission = $T_{\perp {\rm tot}} = T_{\perp}^{2N}$

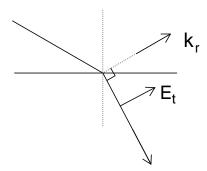
Say glass plates, N=10: $T_{\perp {
m tot}}=0.01$

Typically get total $T_{\parallel tot} = 0.5$

11

Pile of plates simple and robust But often awkward to use: thick, requires collimated light

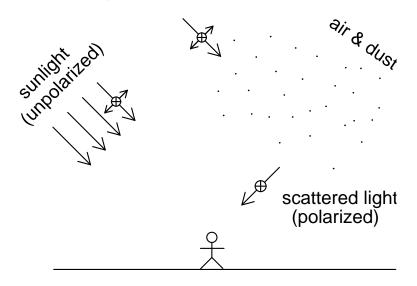
Based on scattering properties: Recall Brewster angle when $\mathbf{k}_{\text{ref}} \parallel \mathbf{E}_{\text{trans}}$



Atoms in glass can't radiate $\parallel \mathbf{E}$ (Charges radiate \perp acceleration)

Scattered light is generally polarized

Example: light from sky



Not typically useful as polarizer

13

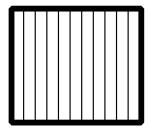
Dichroism (Hecht 8.3)

Dichroism = selective absorption of one (linear) polarization

Clearly useful for polarizers

Example: microwave polarizer

Array of parallel wires spacing $\ll \lambda$



 ${f E}$ aligned with wires: drive current resistance ightarrow power dissipation ightarrow absorption

 $\mathbf{E} \perp$ wires: little current, no absorption

Acts as a polarizer: transmits only $\mathbf{E} \perp$ wires

Watch out: graphically, want to picture vertical ${f E}$ "squeezing" through slots

Actual effect is just the opposite!

15

Optical version: wires → long polymer chains Embed in clear plastic Stretch plastic to align chains

Material called polaroid

Most common polarizer

Great for demos!

Characteristics of polaroid:

- Somewhat lossy: $T_0 \approx 0.7$
- Low leakage $\epsilon \approx 10^{-3}$
- Work best for visible light
- Cheap: \$1 for 5 cm square

Important restriction: limited to low power (plastic can melt)

Don't use with higher intensity laser beams $\max I \approx 1 \text{ W/cm}^2$

17

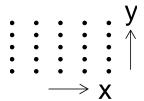
Birefringence (Hecht 8.4)

Best polarizers based on birefingence

- Property of certain crystals

Generally, different directions not equivalent

Possible crystal lattice:

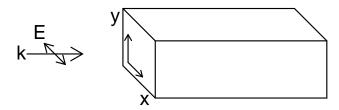


x and y axes different

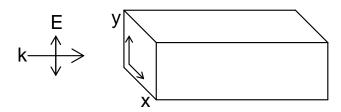
Note x and y =symmetry axes of crystal

In asymmetric crystal, index of refraction n depends on direction of ${\bf E}$

If E along x then have $n = n_x$:



If E along y then $n = n_y$:



19

All crystals have three basic symmetry axes for now, label x, y and z

Call n_x , n_y , $n_z = principle indices of refraction$ Three different kinds of crystals:

- isotropic: $n_x = n_y = n_z$
 - not birefringent
- uniaxial: $n_x = n_y \neq n_z$
 - z axis special: called optic axis
- biaxial: $n_x \neq n_y \neq n_z$
 - optical properties complicated

Question: Can a liquid be birefringent?

Focus on uniaxial:

Symmetry like a cylinder: x and y interchangable

Terminology: call $n_x, n_y = n_o$ ordinary index

Call $n_z = n_e$: extraordinary index

Common optical materials:

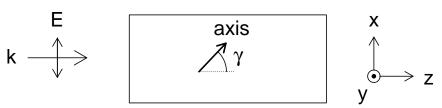
Calcite: $n_o = 1.658$, $n_e = 1.486$ Quartz: $n_o = 1.544$, $n_e = 1.553$

Other examples: ice, mica, sapphire, LiNbO₃

21

What happens if k is not along a crystal axis?

Example:



Light propagates along z

 ${f E}$ along x

optic axis at angle γ in xz-plane

Question: What is index if E along y?

For ${\bf E}$ along x, get effective index $n_{\rm eff}$:

$$\frac{1}{n_{\rm eff}^2} = \frac{\cos^2 \gamma}{n_o^2} + \frac{\sin^2 \gamma}{n_e^2}$$

If
$$\gamma = 0$$
, $n_{\rm eff} = n_o$
if $\gamma = 90^\circ$, $n_{\rm eff} = n_e$

Otherwise n_{eff} between n_o and n_e

Derivation a bit hard, won't go through See Klein and Furtak §9.4

Probably cover in Phys 532

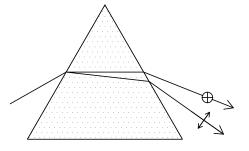
23

Upshot:

In birefringent materials, n depends on polarization

Simple polarizer:

Calcite prism, axis \perp to page



 \perp and \parallel polarizations have different n's Deflected by different amounts

Separate outputs with lens or free propagation

Example of a polarizing beam splitter

= polarizer with two outputs one for each state

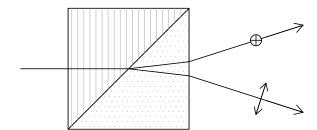
But not a good design:

- Deflection depends on λ
- Significant reflection from surfaces
- Large common deflection inconvenient

Improve by putting two prisms together

25

Wollaston prism:



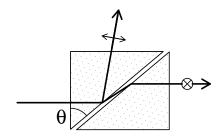
Typical angular separation = $15-20^{\circ}$

Good performance:

- Loss \approx 10%, or 1% if AR coated
- Leakage $\sim 10^{-5}$
- Works at high power

Several other designs, see optics catalogs

Another good design: Glan-Thompson Uses total internal reflection



Again calcite, with optical axis \perp page

Choose prism angle so that $n_e \sin \theta < 1 < n_o \sin \theta$ $\theta = 40^\circ$ works

Then o-light is TIR, e-light is transmitted (Gap is too big for frustrated TIR)

27

Performance similar to Wollaston

- low loss, low leakage
- high power capacity

Advantage: larger beam separation no deviation of e beam

Wollaston and Glan-Thompson expensive \$300-\$500 or more

Retarders (Hecht 8.7)

Use polarizers to make linear polarized light What about circular or elliptical?

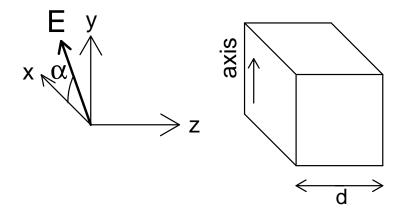
Use retarder

Most common retarder = wave plate

Again based on birefringence

29

Suppose linear polarized light, angle α Incident on uniaxial crystal with axis vertical Crystal thickness d



Coordinates as shown: z = 0 at front of crystal

Incident wave has $\hat{j} = \cos \alpha \hat{x} + \sin \alpha \hat{y}$

$$\mathbf{E}_{\mathsf{inc}} = E_0 \hat{\jmath} e^{i(\mathbf{k} \cdot \mathbf{r} - \omega t)}$$

In crystal $k \to n k_0$ different for E_x and E_y components

So

$$\mathbf{E}_{\text{crystal}} = E_0 \left(\cos \alpha \, e^{i n_o k_0 z} \, \hat{\mathbf{x}} + \sin \alpha \, e^{i n_e k_0 z} \, \hat{\mathbf{y}} \right) e^{-i \omega t}$$

At output $z = d$:

$$\mathbf{E}_{d} = E_{0} \left(\cos \alpha \, e^{in_{o}k_{0}d} \, \hat{\mathbf{x}} + \sin \alpha \, e^{in_{e}k_{0}d} \, \hat{\mathbf{y}} \right) e^{-i\omega t}$$

$$= E_{0} e^{in_{o}k_{0}d} \left[\cos \alpha \, \hat{\mathbf{x}} + \sin \alpha \, e^{i(n_{e}-n_{o})k_{0}d} \, \hat{\mathbf{y}} \right] e^{-i\omega t}$$

Define $\hat{\jmath}_{\text{out}} = \cos \alpha \, \hat{\mathbf{x}} + \sin \alpha \, e^{i(n_e - n_o)k_0 d} \, \hat{\mathbf{y}}$

Then after crystal, have

$$E(z,t) = E_0 e^{in_o k_0 d} \, \hat{\jmath}_{\text{out}} \, e^{i[k(z-d)-\omega t]}$$

$$= E_0 e^{i(n_o-1)k_0 d} \, \hat{\jmath}_{\text{out}} \, e^{i(kz-\omega t)}$$

$$= E'_0 \, \hat{\jmath}_{\text{out}} \, e^{i(kz-\omega t)}$$

Get plane wave out with

$$\hat{\jmath} = \cos \alpha \, \hat{\mathbf{x}} + \sin \alpha \, e^{i\varepsilon} \, \hat{\mathbf{y}}$$
 with $\varepsilon = (n_e - n_o) k_0 d \equiv retardance$

Set d to achieve desired ε value

31

By adjusting α and ε , make arbitrary polarization state

Example: $kd(n_e - n_o) = \pi/2$ Then $d(n_e - n_o) = \lambda/4$: call *quarter-wave plate*

Get
$$\hat{\jmath}_{out} = \cos \alpha \, \hat{\mathbf{x}} + e^{i\pi/2} \sin \alpha \, \hat{\mathbf{y}}$$

= $\cos \alpha \, \hat{\mathbf{x}} + i \sin \alpha \, \hat{\mathbf{y}}$

For
$$\alpha = \pm 45^{\circ}$$
, $\hat{\jmath}_{\text{out}} = \frac{\hat{\mathbf{x}} \pm i\hat{\mathbf{y}}}{\sqrt{2}}$

Make LHC and RHC polarizations

Main use of quarter-wave plate: convert linear to circular polarization

33

Other common configuration: $\varepsilon = \pi$

Then $d(n_e - n_o) = \lambda/2$: half-wave plate

Have
$$e^{i\pi} = -1$$
 so

$$\hat{\jmath}_{\text{out}} = \cos \alpha \, \hat{\mathbf{x}} - \sin \alpha \, \hat{\mathbf{y}}$$

Changes polarization angle $\alpha \rightarrow -\alpha$

Suppose $\alpha_{in} = 45^{\circ}$

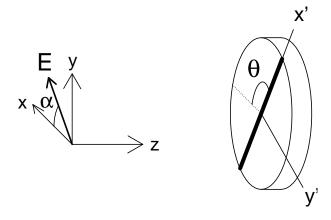
Then $\alpha_{\text{out}} = -45^{\circ}$:

Rotated by 90°: orthogonal to input

Use half-wave plate by rotating it how to calculate effect?

⇒ need to express input in crystal basis

Define x' = axis of waveplate



35

Then

$$\hat{\mathbf{x}}' = \cos\theta \,\hat{\mathbf{x}} + \sin\theta \,\hat{\mathbf{y}}$$

$$\hat{\mathbf{y}}' = \cos\theta\,\hat{\mathbf{y}} - \sin\theta\,\hat{\mathbf{x}}$$

and
$$\hat{\jmath} = \cos \alpha \, \hat{\mathbf{x}} + \sin \alpha \, \hat{\mathbf{y}}$$

Calculate
$$j_{x'} = \hat{\jmath} \cdot \hat{\mathbf{x}}'$$

$$=\cos\alpha\cos\theta-\sin\alpha\sin\theta=\cos(\alpha-\theta)$$

and
$$j_{y'} = \hat{\jmath} \cdot \hat{\mathbf{y}}'$$

$$= -\cos\alpha\sin\theta + \sin\alpha\cos\theta = \sin(\alpha - \theta)$$

Or
$$\hat{\jmath} = \cos \alpha' \hat{\mathbf{x}}' + \sin \alpha' \hat{\mathbf{y}}'$$
 for $\alpha' = \alpha - \theta$

Effect of half wave plate is $\alpha' \rightarrow -\alpha'$

So
$$\alpha_{\text{out}} - \theta = -(\alpha_{\text{in}} - \theta)$$

 $\alpha_{\text{out}} = 2\theta - \alpha_{\text{in}}$

As θ adjusted, output polarization rotates by 2θ

Main use of half-wave plate: rotate linear polarization by arbitrary angle

Question: What happens when $\theta = \alpha_{in}$? What is physically happening in this situation?

37

One problem: waveplates very thin

Quarter wave plate: $d = \lambda/4(n_e - n_o) \sim \lambda$

Often make $\varepsilon = \pi/4 + 2\pi m$ for integer m: get same effect

Called multiple order waveplate typical $m \approx 10$

Most common waveplate material: quartz cost \$200 for 1-cm diameter plate

Cheaper: plastic (\$5 for 5 cm square)

- ε less accurate
- distorts laser beams

Terminology:

Fast axis: axis of wave plate with lower nSlow axis: axis of wave plate with higher n

Doesn't really matter which is optical axis depends on whether $n_o > n_e$ ("negative" crystal) or $n_o > n_e$ ("positive" crystal)

Other ways to make retarders (Hecht pg 356-357):

- Fresnel rhomb: use phase shift from TIR
- Babinet-Soliel compensator:
 waveplate with variable thickness

39

Summary:

- Polarizers transmit one polarization $T = T_0 |\hat{\jmath}^* \cdot \mathbf{a}|^2$
- Most polarizers dichroic or birefringent Birefringent better, more \$
- Birefringence: n depends on $\hat{\jmath}$
 - Uniaxial crystal: one special direction
- Retarders use birefringence
 - Quarter-wave plate: make circ polarization
 - Half-wave plate: rotate linear polarization