Phys $531 \quad$ Lecture $21 \quad 16$ November 2004
Retarders and the Jones Calculus
Last time, discussed how polarizers work:

- transmit one polarization
- blocks orthogonal polarization

Described ways to implement
Discussed birefringence

Today:
Discuss retarders
Develop computational tools

Outline:

- Review polarizers
- Retarders
- Matrix technique
- Partially polarized light

Finish polarization

Next time: Interferometers

Polarizers

Ideal polarizer has transmission axis a
transmits light with $\hat{\jmath}=\mathbf{a}$
blocks light with $\widehat{\jmath} \perp \mathbf{a}$
If a complex, transmit circ or ellip polarization no true "axis"

If $\widehat{\jmath}$ neither $\|$ a nor \perp a use $T=\left|\hat{\jmath}^{*} \cdot \mathbf{a}\right|^{2}$

Output light is polarized along a

Retarders (Hecht 8.7)
Use polarizers to make linear polarized light
What about circular or elliptical?
Use retarder

Most common retarder $=$ wave plate
Based on birefringence
Light polarized along optic axis: index n_{e}
Light polarized \perp axis: index n_{o}

Suppose linear polarized light, angle α
Incident on uniaxial crystal with axis vertical
Crystal thickness d

Coordinates as shown: $z=0$ at front of crystal

Incident wave has $\hat{\jmath}=\cos \alpha \widehat{\mathbf{x}}+\sin \alpha \widehat{\mathbf{y}}$

$$
\mathbf{E}_{\text {inc }}=E_{0} \widehat{\jmath} e^{i(\mathbf{k} \cdot \mathbf{r}-\omega t)}
$$

In crystal $k \rightarrow n k_{0}=n \omega / c$ different for E_{x} and E_{y} components

So

$$
\mathbf{E}_{\text {crystal }}=E_{0}\left(\cos \alpha e^{i n_{o} k_{0} z} \widehat{\mathbf{x}}+\sin \alpha e^{i n_{e} k_{0} z} \widehat{\mathbf{y}}\right) e^{-i \omega t}
$$

At output $z=d$:

$$
\begin{aligned}
\mathbf{E}_{d} & =E_{0}\left(\cos \alpha e^{i n_{o} k_{0} d} \widehat{\mathbf{x}}+\sin \alpha e^{i n_{e} k_{0} d} \widehat{\mathbf{y}}\right) e^{-i \omega t} \\
& =E_{0} e^{i n_{o} k_{0} d}\left[\cos \alpha \widehat{\mathbf{x}}+\sin \alpha e^{i\left(n_{e}-n_{o}\right) k_{0} d} \widehat{\mathbf{y}}\right] e^{-i \omega t}
\end{aligned}
$$

Define $\widehat{\jmath}_{\text {out }}=\cos \alpha \widehat{\mathbf{x}}+\sin \alpha e^{i\left(n_{e}-n_{o}\right) k_{0} d} \widehat{\mathbf{y}}$

Then after crystal, have

$$
\begin{aligned}
E(z, t) & =E_{0} e^{i n_{o} k_{0} d} \widehat{\jmath}_{\mathrm{out}} e^{i[k(z-d)-\omega t]} \\
& =E_{0} e^{i\left(n_{o}-1\right) k_{0} d} \widehat{\jmath}_{\mathrm{out}} e^{i(k z-\omega t)} \\
& =E_{0}^{\prime} \widehat{\jmath}_{\text {out }} e^{i(k z-\omega t)}
\end{aligned}
$$

Get plane wave out with

$$
\begin{aligned}
& \qquad \hat{\jmath}=\cos \alpha \widehat{\mathbf{x}}+\sin \alpha e^{i \varepsilon} \hat{\mathbf{y}} \\
& \text { and } \varepsilon=\left(n_{e}-n_{o}\right) k_{0} d \equiv \text { retardance }
\end{aligned}
$$

Set d to achieve desired ε value

By adjusting α and ε, make arbitrary polarization state

Example: $k d\left(n_{e}-n_{o}\right)=\pi / 2$
Then $d\left(n_{e}-n_{o}\right)=\lambda / 4$: call quarter-wave plate
Get $\widehat{J}_{\text {out }}=\cos \alpha \widehat{\mathbf{x}}+e^{i \pi / 2} \sin \alpha \widehat{\mathbf{y}}$

$$
=\cos \alpha \widehat{\mathrm{x}}+i \sin \alpha \widehat{\mathbf{y}}
$$

For $\alpha= \pm 45^{\circ}, \widehat{\jmath}_{\text {out }}=\frac{\widehat{\mathbf{x}} \pm i \widehat{\mathbf{y}}}{\sqrt{2}}$
Make LHC and RHC polarizations
Main use of quarter-wave plate: convert linear to circular polarization

Other common configuration: $\varepsilon=\pi$
Then $d\left(n_{e}-n_{o}\right)=\lambda / 2$: half-wave plate
Have $e^{i \pi}=-1$ so

$$
\hat{\jmath}_{\text {out }}=\cos \alpha \widehat{\mathbf{x}}-\sin \alpha \widehat{\mathbf{y}}
$$

Changes polarization angle $\alpha \rightarrow-\alpha$

If $\alpha_{\text {in }}=45^{\circ}$, then $\alpha_{\text {out }}=-45^{\circ}$
Rotated by 90° : orthogonal to input
Place between crossed polarizers, get 100% transmission

Generally, use half-wave plate at arb angle θ how to calculate effect?
\Rightarrow need to express input in crystal basis
Define $x^{\prime}=$ axis of waveplate

Then

$$
\begin{aligned}
& \widehat{\mathbf{x}}^{\prime}=\cos \theta \widehat{\mathbf{x}}+\sin \theta \widehat{\mathbf{y}} \\
& \widehat{\mathbf{y}}^{\prime}=\cos \theta \widehat{\mathbf{y}}-\sin \theta \widehat{\mathbf{x}}
\end{aligned}
$$

and $\widehat{\jmath}=\cos \alpha \widehat{\mathbf{x}}+\sin \alpha \widehat{\mathbf{y}}$
Calculate $j_{x^{\prime}}=\hat{\mathbf{x}}^{\prime} \cdot \hat{\jmath}$
$=\cos \alpha \cos \theta-\sin \alpha \sin \theta=\cos (\alpha-\theta)$
and $j_{y^{\prime}}=\widehat{\mathbf{y}}^{\prime} \cdot \hat{\jmath}$
$=-\cos \alpha \sin \theta+\sin \alpha \cos \theta=\sin (\alpha-\theta)$
So: $\hat{\jmath}=\cos \alpha^{\prime} \hat{\mathbf{x}}^{\prime}+\sin \alpha^{\prime} \hat{\mathbf{y}}^{\prime}$
for $\alpha^{\prime}=\alpha-\theta$
(Or just use $x^{\prime}-y^{\prime}$ coords from beginning)

Effect of half wave plate is $\alpha^{\prime} \rightarrow-\alpha^{\prime}$
So $\alpha_{\text {out }}-\theta=-\left(\alpha_{\text {in }}-\theta\right)$

$$
\alpha_{\mathrm{out}}=2 \theta-\alpha_{\mathrm{in}}
$$

Change θ by $\Delta \theta$, output polarization rotates by $2 \Delta \theta$

Main use of half-wave plate:
rotate linear polarization by arbitrary angle

Question: What happens when $\theta=\alpha_{\text {in }}$? What is physically happening in this situation?

One problem: waveplates very thin
Quarter wave plate: $d=\lambda / 4\left(n_{e}-n_{o}\right) \sim \lambda$
Often make $\varepsilon=\pi / 4+2 \pi m$ for integer m : get same effect

Called multiple order waveplate typical $m \approx 10$

Most common waveplate material: quartz
cost \$200 for $1-\mathrm{cm}$ diameter plate
Cheaper: plastic ($\$ 5$ for 5 cm square)

- ε less accurate
- distorts laser beams

Terminology:

- Fast axis: axis of wave plate with lower n
- Slow axis: axis of wave plate with higher n

Doesn't really matter which is optical axis depends on whether $n_{o}>n_{e}$ ("negative" crystal) or $n_{o}>n_{e}$ ("positive" crystal)

Other ways to make retarders (Hecht pg 356-357):

- Fresnel rhomb: use phase shift from TIR
- Babinet-Soliel compensator: waveplate with variable thickness

Jones Calculus (Hecht 8.13.2-3)
Polarizers and retarders simple in proper basis Polarizer: pass one component, block other Retarder: add phase shift to one component

Always good to choose basis carefully

But with multiple elements, no one basis is simple Half-wave plate example illustrated how to deal: change basis for each element

Easy way to implement: use matrix notation

Basic idea: $\hat{\jmath}$ is a vector
write $\hat{\jmath}=\left[\begin{array}{l}j_{x} \\ j_{y}\end{array}\right]$
Polarizers and retarders are linear elements
write as matrices $\hat{\jmath}_{\text {out }}=\mathcal{U} \widehat{\jmath}_{\text {in }}$
$\mathcal{U}=2 \times 2$ matrix

Hecht writes matrix as \mathcal{A}
I'll use \mathcal{U}

Examples:
Matrix for polarizer with $\mathrm{a}=\hat{\mathrm{x}}$ is

$$
\mathcal{U}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]
$$

Arbitrary incident polarization:

$$
\widehat{\jmath}_{\mathrm{in}}=\left[\begin{array}{c}
\cos \alpha \\
e^{i \varepsilon} \sin \alpha
\end{array}\right]
$$

So $\widehat{\jmath}_{\text {out }}=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]\left[\begin{array}{c}\cos \alpha \\ e^{i \varepsilon} \sin \alpha\end{array}\right]$

$$
=\left[\begin{array}{c}
\cos \alpha \\
0
\end{array}\right]
$$

See $\hat{\jmath}_{\text {out }} \|$ a and $\left|\hat{\jmath}_{\text {out }}\right|^{2}=\left|\widehat{\jmath}_{\text {in }}^{*} \cdot \mathbf{a}\right|^{2}$ as required

Not really any different than previous calcs
Just written differently:
Matrix is taking $\widehat{\jmath} \cdot \mathbf{a}$ for you

Question: What would \mathcal{U} be for polarizer with transmission axis along \hat{y} ?

One issue: $\hat{\jmath}$ is supposed to be unit vector
Really have $t \widehat{\jmath}_{\text {out }}=\mathcal{U}_{\jmath_{\text {in }}}=\cos \alpha\left[\begin{array}{l}1 \\ 0\end{array}\right]$
where $t=$ amplitude transmission coeff

$$
E_{0 o u t}=t E_{0 \text { in }}
$$

Then intensity transmittance $T=|t|^{2}$

Easier to write $\widehat{\jmath}_{\text {out }}=\mathcal{U} \widehat{\jmath}_{\text {in }}$
use $T=\left|\hat{\jmath}_{\text {out }}\right|^{2}$
Just remember to make $\left|\widehat{\jmath}_{\mathrm{in}}\right|^{2}=1$

More examples:
Wave plate with optic axis along y
Saw $\hat{\jmath} \rightarrow j_{x} e^{i n_{o} k_{0} d} \widehat{\mathbf{x}}+j_{y} e^{i n_{e} k_{0} d} \hat{\mathbf{y}}$
So $\mathcal{U}=\left[\begin{array}{cc}e^{i n_{o} k_{0} d} & 0 \\ 0 & e^{i n_{e} k_{0} d}\end{array}\right]=e^{i n_{o} k_{0} d}\left[\begin{array}{cc}1 & 0 \\ 0 & e^{i\left(n_{e}-n_{o}\right) k_{0} d}\end{array}\right]$
Say quarter wave plate, $n_{e}>n_{o}$

- then slow axis along y

$$
\mathcal{U}=\left[\begin{array}{ll}
1 & 0 \\
0 & i
\end{array}\right]
$$

ignoring overall phase

Or, quarter wave plate with fast axis along y :

$$
\mathcal{U}=\left[\begin{array}{cc}
1 & 0 \\
0 & -i
\end{array}\right]
$$

\equiv slow axis along x
(Doesn't matter which is optic axis)

Half wave plate, either axis along y :

$$
\mathcal{U}=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

since $e^{i \pi}=e^{-i \pi}=-1$

Generally called Jones matrices
Easy when element axes aligned to x or y

What if axis at angle θ ?
Define two coordinates:

$$
\begin{aligned}
& x-y=\text { "lab" coordinates } \\
& x^{\prime}-y^{\prime}=\text { "element" coordinates }
\end{aligned}
$$

For instance, $x^{\prime}=$ transmission axis of polarizer

Express $\widehat{\jmath}$ in $x^{\prime}-y^{\prime}$ coords
If x^{\prime} axis at angle θ to x, then

$$
\begin{aligned}
& \widehat{\mathbf{x}}^{\prime}=\cos \theta \widehat{\mathbf{x}}+\sin \theta \widehat{\mathbf{y}} \\
& \widehat{\mathbf{y}}^{\prime}=\cos \theta \widehat{\mathbf{y}}-\sin \theta \widehat{\mathbf{x}}
\end{aligned}
$$

as before
So
$j_{x^{\prime}}=\widehat{\mathbf{x}}^{\prime} \cdot \hat{\jmath}=\cos \theta j_{x}+\sin \theta j_{y}$
$j_{y^{\prime}}=\hat{\mathbf{y}}^{\prime} \cdot \hat{\jmath}=-\sin \theta j_{x}+\cos \theta j_{y}$
Write

$$
\left[\begin{array}{l}
j_{x^{\prime}} \\
j_{y^{\prime}}
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
j_{x} \\
j_{y}
\end{array}\right]
$$

Define rotation matrix

$$
\mathcal{R}(\theta)=\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]
$$

Then $\hat{\jmath}=\mathcal{R}(\theta) \hat{\jmath}$
In primed coordinates, \mathcal{U} is easy
For polarizer

$$
\mathcal{U}^{\prime}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]
$$

and $\hat{\jmath}_{\text {out }}^{\prime}=\mathcal{U}^{\prime} \hat{\jmath}_{\text {in }}^{\prime}=\mathcal{U}^{\prime} \mathcal{R}(\theta) \hat{\jmath}$

Still need to get $\widehat{\jmath}_{\text {out }}$ in lab coords
Generally $\hat{\jmath}=R(\theta)^{-1} \hat{\jmath}$
$\mathcal{R}(\theta)^{-1}=$ matrix inverse of $\mathcal{R}(\theta)$
Find $\mathcal{R}(\theta)^{-1}=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]=\mathcal{R}(-\theta)$
So $\widehat{\jmath}_{\text {out }}=\mathcal{R}(-\theta) \mathcal{U}^{\prime} \mathcal{R}(\theta) \hat{\jmath}_{\text {in }}$

Or, without specifying coordinates:
for $\begin{aligned} & \mathcal{U}(\theta)=\mathcal{R}(-\theta) \mathcal{U}_{0} \mathcal{R}(\theta) \\ & \mathcal{U}_{0} \equiv \mathcal{U}(\theta=0)\end{aligned}$

So polarizer with axis at angle θ :

$$
\begin{aligned}
\mathcal{U}(\theta) & =\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right] \\
& =\left[\begin{array}{cc}
\cos ^{2} \theta & \sin \theta \cos \theta \\
\sin \theta \cos \theta & \sin ^{2} \theta
\end{array}\right]
\end{aligned}
$$

If $\widehat{\jmath}_{\text {in }}=\left[\begin{array}{l}1 \\ 0\end{array}\right]=\widehat{x}$
get $\widehat{\jmath}$ out $\left[\begin{array}{c}\cos ^{2} \theta \\ \sin \theta \cos \theta\end{array}\right]=\cos \theta\left[\begin{array}{c}\cos \theta \\ \sin \theta\end{array}\right]$
Get $T=\left|\hat{\jmath}_{\text {out }}\right|^{2}=\cos ^{2} \theta$ as expected

Other examples:
QWP fast axis at angle θ (measured from x axis)

$$
\begin{aligned}
\mathcal{U}(\theta) & =\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & i
\end{array}\right]\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right] \\
& =\left[\begin{array}{cc}
\cos ^{2} \theta+i \sin ^{2} \theta & (1-i) \sin \theta \cos \theta \\
(1-i) \sin \theta \cos \theta & \sin ^{2} \theta+i \cos ^{2} \theta
\end{array}\right]
\end{aligned}
$$

HWP at angle θ

$$
\mathcal{U}(\theta)=\left[\begin{array}{cc}
\cos (2 \theta) & \sin (2 \theta) \\
\sin (2 \theta) & -\cos (2 \theta)
\end{array}\right]
$$

Get matrices for all elements in lab coordinates
For multiple elements, multiply matrices

Example: Suppose light linearly polarized along y passes through a quarter-wave plate with slow axis at $\theta_{1}=30^{\circ}$ from x, then a half-wave plate with axis at $\theta_{2}=60^{\circ}$, and finally a polarizer with axis at $\theta_{3}=45^{\circ}$. What is the total transmission?

Solution:

Get matrix for each element.

$$
\begin{aligned}
& \mathcal{U}_{1}=\left[\begin{array}{cc}
0.75+0.25 i & 0.433-0.433 i \\
0.433-0.433 i & 0.25+0.75 i
\end{array}\right] \\
& \mathcal{U}_{2}=\left[\begin{array}{cc}
-0.5 & 0.866 \\
0.866 & 0.5
\end{array}\right] \quad \mathcal{U}_{3}=\left[\begin{array}{ll}
0.5 & 0.5 \\
0.5 & 0.5
\end{array}\right] \\
& \mathcal{U}_{\text {tot }}=\mathcal{U}_{3} \mathcal{U}_{2} \mathcal{U}_{1}=\left[\begin{array}{cc}
0.433-0.25 i & 0.25+0.433 i \\
0.433-0.25 i & 0.25+0.433 i
\end{array}\right]
\end{aligned}
$$

Given $\widehat{\jmath}_{\text {in }}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$ so $\hat{\jmath}_{\text {out }}=\left[\begin{array}{l}0.25+0.433 i \\ 0.25+0.433 i\end{array}\right]$
So $T=\left|\hat{\jmath}_{\text {out }}\right|^{2}=2 \times|0.25+0.433|^{2}=0.5$
Question: What is the polarization state of the output?

Often output state is "disguised" by extra phase factors

Example:
Light polarized along $\hat{\mathbf{y}}$ into QWP at 45°
Expect to get circular polarized light out
Have $\mathcal{U}=\frac{1}{2}\left[\begin{array}{ll}1+i & 1-i \\ 1-i & 1+i\end{array}\right]$
so $\widehat{\jmath}_{\text {out }}=\frac{1}{2}\left[\begin{array}{l}1+i \\ 1-i\end{array}\right]$
Doesn't look like circular polarization!

Note $1+i=\sqrt{2} e^{i \pi / 4}$

$$
1-i=\sqrt{2} e^{-i \pi / 4}
$$

So $\widehat{\jmath}_{\text {out }}=\frac{1}{\sqrt{2}}\left[\begin{array}{c}e^{i \pi / 4} \\ e^{-i \pi / 4}\end{array}\right]=\frac{e^{i \pi / 4}}{\sqrt{2}}\left[\begin{array}{c}1 \\ e^{-i \pi / 2}\end{array}\right]$

$$
=\frac{e^{i \pi / 4}}{\sqrt{2}}\left[\begin{array}{c}
1 \\
-i
\end{array}\right]
$$

$=$ right circular polarization
Good approach:
always factor out phase to make j_{x} real
Gives standard form $\hat{\jmath}=\cos \beta \widehat{\mathbf{x}}+e^{i \varepsilon} \sin \beta \widehat{\mathbf{y}}$

Can generalize and work in any basis ($\hat{\mathbf{e}}_{1}, \widehat{\mathbf{e}}_{2}$)
Write $\hat{\jmath}=j_{1} \hat{\mathbf{e}}_{1}+j_{2} \hat{\mathbf{e}}_{2}=\left[\begin{array}{l}j_{1} \\ j_{2}\end{array}\right]_{12}$
then $\left[\begin{array}{l}j_{1} \\ j_{2}\end{array}\right]_{12}=\left[\begin{array}{ll}\widehat{\mathbf{e}}_{1}^{*} \cdot \hat{\mathbf{x}} & \widehat{\mathbf{e}}_{1}^{*} \cdot \hat{\mathbf{y}} \\ \widehat{\mathbf{e}}_{2}^{*} \cdot \hat{\mathbf{x}} & \widehat{\mathbf{e}}_{2}^{*} \cdot \hat{\mathbf{y}}\end{array}\right]\left[\begin{array}{l}j_{x} \\ j_{y}\end{array}\right]_{x y}$

$$
\equiv \mathcal{S}_{(x y \rightarrow 12)}\left[\begin{array}{l}
j_{x} \\
j_{y}
\end{array}\right]_{x y}
$$

Then in 1-2 basis, have

$$
\mathcal{U}_{12}=\mathcal{S}_{(x y \rightarrow 12)} \mathcal{U}_{x y} \mathcal{S}_{(x y \rightarrow 12)}^{\dagger}
$$

where $\mathcal{S}^{\dagger}=$ conjugate transposition of \mathcal{S}

Partially Polarized Light

Sometimes light is not perfectly polarized also not unpolarized

Example: pass natural light through poor polarizer
No Jones vector in this case:
$\hat{\jmath}$ is fluctuating
Instead define coherency matrix

$$
G=\left[\begin{array}{ll}
\left\langle j_{x} j_{x}^{*}\right\rangle & \left\langle j_{x} j_{j^{*}}^{*}\right\rangle \\
\left\langle j_{y} j_{x}^{*}\right\rangle & \left\langle j_{y} j_{y}^{*}\right\rangle
\end{array}\right]=\left\langle\left[\begin{array}{l}
j_{x} \\
j_{y}
\end{array}\right]\left[\begin{array}{cc}
j_{x}^{*} & j_{y}^{*}
\end{array}\right]\right\rangle
$$

For polarized light, G and $\hat{\jmath}$ have same information
Unpolarized light $=$
mixture of x and y polarized light
Then $G_{\text {unpolarized }}=\frac{1}{2}\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]+\frac{1}{2}\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$

$$
=\left[\begin{array}{cc}
1 / 2 & 0 \\
0 & 1 / 2
\end{array}\right]
$$

Get G in other cases by propagation
If system has Jones matrix \mathcal{U}, then have

$$
G_{\text {out }}=\mathcal{U} G_{\text {in }} \mathcal{U}^{\dagger}
$$

Example:
Suppose glass surface has $t_{\|}=0.95, t_{\perp}=0.85$ from Fresnel relations
Then $\mathcal{U}=\left[\begin{array}{cc}0.95 & 0 \\ 0 & 0.85\end{array}\right]$ in $\|-\perp$ basis
Illuminate with natural light:

$$
\begin{aligned}
G_{\text {Out }} & =\left[\begin{array}{cc}
0.95 & 0 \\
0 & 0.85
\end{array}\right]\left[\begin{array}{cc}
0.5 & 0 \\
0 & 0.5
\end{array}\right]\left[\begin{array}{cc}
0.95 & 0 \\
0 & 0.85
\end{array}\right] \\
& =\left[\begin{array}{cc}
0.45 & 0 \\
0 & 0.36
\end{array}\right]
\end{aligned}
$$

Total irradiance $=\left|j_{x}\right|^{2}+\left|j_{y}\right|^{2}=$ Trace G
$=$ sum of diagonal elements
Here write

$$
G_{\text {out }}=0.81\left[\begin{array}{cc}
0.55 & 0 \\
0 & 0.45
\end{array}\right]
$$

Total transmission is 0.81

Transmitted light is partially polarized:
55% || and $45 \% ~ \perp$

Could then pass through a QWP at 45°

$$
\mathcal{U}=\frac{e^{i \pi / 4}}{\sqrt{2}}\left[\begin{array}{cc}
1 & -i \\
-i & 1
\end{array}\right]
$$

$$
\text { Get } \begin{aligned}
G_{\text {out }} & =\frac{1}{2}\left[\begin{array}{cc}
1 & -i \\
-i & 1
\end{array}\right]\left[\begin{array}{cc}
0.55 & 0 \\
0 & 0.45
\end{array}\right]\left[\begin{array}{ll}
1 & i \\
i & 1
\end{array}\right] \\
& =\left[\begin{array}{cc}
0.5 & 0.05 i \\
-0.05 i & 0.5
\end{array}\right]
\end{aligned}
$$

Describes partial circular polarization

Coherency matrix is generally nice way to describe polarization

- Takes care of phase factors
- Has correct symmetry property: 180° rotation doesn't change state

Older way to describe partially polarized light: Stokes parameters (Hecht 8.13.1)

Coherency matrix is better
Reference Klein and Furtak $\S 9.3$

Summary:

- Retarders based on birefringence
- Quarter-wave plate: make circ polarization
- Half-wave plate: rotate linear polarization
- Use Jones matrices for multiple elements
- Partially polarized light
\rightarrow coherency matrix
- Also uses Jones matrices

