Last time, finished polarization
Retarders - give phase shift between components
Jones Calculus - matrix method for polarization problems

Rest of course: few short topics
Today: Interferometers

Outline:

- Review interference
- Michelson interferometer
- Thin film interference
- Fabry-Perot interferometers

All from Hecht chapter 9

Next time: how laser beams work

Interference

Looked at interference previously (lecture 13)
Then proceeded to transforms and diffraction
Today: go back and look at applications

For now consider monochromatic light frequency ω

After break, consider polychromatic light

Basic interference formula:

$$
\begin{aligned}
& \mathbf{E}_{\mathrm{tot}}(\mathbf{r}, t)=\mathbf{E}_{1}(\mathbf{r}, t)+\mathbf{E}_{2}(\mathbf{r}, t) \\
& \left|\mathbf{E}_{\mathrm{tot}}\right|^{2}=\left|\mathbf{E}_{1}\right|^{2}+\left|\mathbf{E}_{2}\right|^{2}+\mathbf{E}_{1}^{*} \cdot \mathbf{E}_{2}+\mathbf{E}_{1} \cdot \mathbf{E}_{2}^{*}
\end{aligned}
$$

Question: If \mathbf{E}_{1} and \mathbf{E}_{2} have orthogonal polarizations, can they interfere? What if they are elliptically polarized?

Review simple example: two slit inteference

Setup:

- Slit width b, separation a along x
- Length along $y=L$: look at $y=0$
- Light polarized along y, incident amplitude E_{0}

From Fraunhofer formula:
$\mathbf{E}_{\text {tot }}(x, 0, d)=-\hat{\mathbf{y}} \frac{i b L}{\lambda d} E_{0} e^{i k d} \operatorname{sinc}\left(\frac{k x b}{2 d}\right)\left(1+e^{-i k x a / d}\right)$ and

$$
\left|\mathrm{E}_{\mathrm{tot}}\right|^{2}=\left(\frac{b L}{\lambda d}\right)^{2} \operatorname{sinc}^{2}\left(\frac{k x b}{2 d}\right)\left|1+e^{-i k x a / d}\right|^{2}
$$

Interference described by $\left|1+e^{-i k x a / d}\right|^{2}$ term

$$
\begin{aligned}
\left|1+e^{-i k x a / d}\right|^{2} & =\left(1+e^{-i k x a / d}\right)\left(1+e^{i k x a / d}\right) \\
& =1+1+e^{i k x a / d}+e^{-i k x a / d} \\
& =2+2 \cos \left(\frac{k x a}{d}\right)
\end{aligned}
$$

Cosine term from interference of \mathbf{E}_{1} and \mathbf{E}_{2}
Interference phase $=k x a / d$

Get same result from geometrical picture

Phase difference between \mathbf{E}_{1} and $\mathbf{E}_{2}=k a \theta$

$$
=k x a / d
$$

$=$ argument of interference term

Two-slit system is simple interferometer
= device that measures interference between two (or more) fields

Allows measurement of phase differences: often useful

Two-slit interference hard to apply Look at some better techniques

Michelson Interferometer (Hecht 9.4.2)

Heavy black lines $=$ mirror surface
Dashed black line $=$ beamsplitter surface
"Compensation plate" makes arms equivalent

At output, see two sources reflection from each mirror

Interference pattern depends on

- mirror positions
- real source location

Mirror tilted:

- sources displaced horizontally

Arm lengths different:

- sources displaced vertically

Example:

- Distant source
- Arm lengths equal
- Mirror tilted by θ

Output beams tilted by 2θ
Get plane wave interference pattern

For small θ :

$$
\begin{aligned}
& \mathbf{E}_{1}=\mathbf{E}_{0} e^{i(k z-\omega t)} \\
& \mathbf{E}_{2}=\mathbf{E}_{0} e^{i(k z+2 k \theta x-\omega t)}
\end{aligned}
$$

Interference pattern

$$
\begin{aligned}
\left|\mathbf{E}_{1}+\mathbf{E}_{2}\right|^{2} & =\left|\mathbf{E}_{0}\right|^{2}\left|1+e^{i 2 k \theta x}\right|^{2} \\
& =2\left|\mathbf{E}_{0}\right|^{2}[1+\cos (2 k \theta x)]
\end{aligned}
$$

Observe vertical stripes
Periodicity $\Delta x=\lambda / 2 \theta$

Call stripes "fringes"
As $\theta \rightarrow 0$ central fringe expands to fill output If mirrors not perfectly flat, get wavy pattern from mirror distortion

Can use to characterize mirrors

What if we also adjust position of mirror? Offset position by d

For small θ, upper arm length increases by $2 d$

Effect on pattern:
$\mathbf{E}_{1}=\mathbf{E}_{0} e^{i(k z-\omega t)}$
$\mathbf{E}_{2}=\mathbf{E}_{0} e^{i(k z+k x \theta+2 k d-\omega t)}$
Get
$\left|\mathrm{E}_{\mathrm{tot}}\right|^{2}=2\left|\mathrm{E}_{0}\right|^{2}[1+\cos (2 k \theta x+2 k d)]$
Peaks at $2 k x \theta+2 k d=2 \pi m$ integer m

$$
x_{m}=\frac{1}{\theta}\left(\frac{m \lambda}{2}-d\right)
$$

15

Peaks slide across field as d changes

As $\theta \rightarrow 0$, pattern is uniform

- oscillates between bright and dark with d

Periodicity in $d: 2 k \Delta d=2 \pi$

$$
\Delta d=\frac{\lambda}{2}
$$

Change d by $\lambda / 4$, output changes bright \rightarrow dark
Easy to visualize how waves interfere:

What if source not at infinity?
Get interference of spherical waves, not plane waves
Observe rings, not stripes

Tilting θ adjusts center of rings
Changing d makes rings expand or contract
Obtain uniform output when $d \approx 0$
Question: If interferometer is adjusted to give uniform dark output, where is the energy going?

Applications:

- Michelson used to test aether theory
- Test surface accuracy of optics

Variant: Twyman-Green interferometer
(Hecht 9.8.2)

- Measure index of refraction of gases
- Put gas cell in one arm, vary pressure
- Count fringes
- FTIR spectroscopy
- Effect with polychromatic source

Other Interferometers

 Sagnac \rightarrowBeams travel same path

\leftarrow Mach-Zehnder
Completely independent paths

Parallel Plate Interferometer (Hecht 9.4.1)

Very simple setup:
Plane wave incident on glass plate

Look at interference of reflected beams

What is phase difference?
Get from optical path difference:

OPL for $\mathbf{E}_{1}=\overline{A D}$
OPL for $\mathrm{E}_{2}=n(\overline{A B}+\overline{B C})$

From geometry $\overline{A B}=\overline{B C}=\frac{d}{\cos \theta_{t}}$
Also have $\overline{A C}=2 d \tan \theta_{t}$

$$
\text { and } \overline{A D}=\overline{A C} \sin \theta=2 d \tan \theta_{t} \sin \theta
$$

Then

$$
\Delta \mathcal{S}=2 n \overline{A B}-\overline{A D}=\frac{2 n d}{\cos \theta_{t}}-\frac{2 d \sin \theta_{t} \sin \theta}{\cos \theta_{t}}
$$

Use $\sin \theta=n \sin \theta_{t}$

$$
\begin{aligned}
\Delta \mathcal{S} & =\frac{2 n d}{\cos \theta_{t}}-\frac{2 n d \sin ^{2} \theta_{t}}{\cos \theta_{t}}=\frac{2 n d\left(1-\sin ^{2} \theta_{t}\right)}{\cos \theta_{t}} \\
& =\frac{2 n d \cos ^{2} \theta_{t}}{\cos \theta_{t}}
\end{aligned}
$$

So $\Delta \mathcal{S}=2 n d \cos \theta_{t}=2 d \sqrt{n^{2}-\sin ^{2} \theta}$

However, get additional phase shift from reflection
Fresnel relations: if no TIR,
π phase shift for internal vs. external reflection

Then $\left|\mathbf{E}_{\text {tot }}\right|^{2}=\left|\mathbf{E}_{0}\right|^{2}\left|1-e^{i k \Delta \mathcal{S}}\right|^{2}$

$$
=2\left|\mathbf{E}_{0}\right|^{2}\left[1-\cos \left(2 n k d \cos \theta_{t}\right)\right]
$$

Note reflected power $\propto\left|\mathbf{E}_{\text {tot }}\right|^{2}$ oscillates with θ
Zero when

$$
\cos \theta_{t}=\frac{2 \pi m}{2 n k d}=\frac{m \lambda}{2 n d} \quad \text { for integer } m
$$

Note interference depends on λ
Reason why oil films, soap bubbles look colored:
For some θ, blue light has a maximum and red light has a minimum

Question: Why don't we see colors in light reflected from ordinary glass windows?

Note if $\theta=0$, then $\theta_{t}=0$
No reflection when $2 n d=m \lambda$
or $d=m \frac{\lambda^{\prime}}{2}$
$\lambda^{\prime}=$ wavelength in medium
Simple picture:

Perfect transmission when wavelengths "fit" medium

- standard resonance condition

Use this idea for anti-reflection coating air

Put layer of MgF_{2} on glass air interface $n=1.38$

Get reflection from both surfaces, set thickness so that waves cancel

Amplitudes E_{1} and E_{2} not equal: get $R \approx 1 \%$

- do better with multiple layers (Hecht 9.7)

Fabry-Perot Interferometer (Hecht 9.6)

We considered only one reflection
from each surface
Really multiple reflections

When R is not small, need to sum all reflections Mirrored plate $=$ Fabry-Perot interferometer
Have

$$
\mathbf{E}_{\mathrm{ref}}=\sum_{N=1}^{\infty} \mathbf{E}_{N}
$$

We can evaluate this
Use:
$t=$ amplitude transmittance air \rightarrow glass
$t^{\prime}=$ amplitude transmittance glass \rightarrow air
$r=$ amplitude reflectance air \rightarrow air
$r^{\prime}=$ amplitude reflectance glass \rightarrow glass
Get from Fresnel equations

Look at each term
Suppose incident field \mathbf{E}_{0}

First reflection just reflects air \rightarrow air: $\quad \mathbf{E}_{1}=r \mathbf{E}_{0}$
Second reflection:
transmit air \rightarrow glass: t
reflect glass \rightarrow glass: r^{\prime}
transmit glass \rightarrow air: t^{\prime}
Also acquires phase $e^{i \delta}$ with $\delta=2 n k d \cos \theta_{t}$
So $\mathbf{E}_{2}=t r^{\prime} t^{\prime} e^{i \delta} \mathbf{E}_{0}$

29

Third reflection:
Like \mathbf{E}_{2} but two additional reflections r^{\prime} and additional phase shift $e^{i \delta}$

So $\mathbf{E}_{3}=t r^{\prime 3} t^{\prime} e^{2 i \delta} \mathbf{E}_{0}$

Get additional factor of $\left(r^{\prime}\right)^{2} e^{i \delta}$ for each order
Generally

$$
\mathbf{E}_{N}=t t^{\prime}\left(r^{\prime}\right)^{2 N-3} e^{(N-1) i \delta} \mathbf{E}_{0}
$$

(but $N=1$ is special)

So total reflected field is

$$
\mathbf{E}_{\mathrm{ref}}=\left[r+t t^{\prime} r^{\prime} e^{i \delta}\left(1+r^{\prime 2} e^{i \delta}+r^{\prime 4} e^{2 i \delta}+\ldots\right)\right] \mathbf{E}_{0}
$$

Terms in parentheses are geometric sum:

$$
1+r^{\prime 2} e^{i \delta}+r^{\prime 4} e^{2 i \delta}+\cdots=\sum_{N=0}^{\infty} x^{N}
$$

for $x=r^{\prime 2} e^{i \delta}$

Then

$$
\sum_{N=0}^{\infty} x^{N}=\frac{1}{1-x}=\frac{1}{1-r^{\prime 2} e^{i \delta}}
$$

So

$$
\mathbf{E}_{\mathrm{ref}}=\left(r+\frac{t t^{\prime} r^{\prime} e^{i \delta}}{1-r^{\prime 2} e^{i \delta}}\right) \mathbf{E}_{0}
$$

Can simplify further:
Still have $r^{\prime}=-r$
Also, for nonabsorbing medium have $t t^{\prime}=1-r^{2}$
Can prove from Fresnel, or see Hecht 4.10
Substitute, get

$$
\mathbf{E}_{\mathrm{ref}}=\left[r-\frac{\left(1-r^{2}\right) r e^{i \delta}}{1-r^{2} e^{i \delta}}\right] \mathbf{E}_{0}
$$

Simplify to

$$
\mathbf{E}_{\mathrm{ref}}=\frac{r\left(1-e^{i \delta}\right)}{1-r^{2} e^{i \delta}} \mathbf{E}_{0}
$$

Then irradiance

$$
\begin{aligned}
I_{\mathrm{ref}} & =r^{2} \frac{\left|1-e^{i \delta}\right|^{2}}{\left|1-r^{2} e^{i \delta}\right|^{2}} I_{0} \\
& =\frac{2 R(1-\cos \delta)}{1+R^{2}-2 R \cos \delta} I_{0}
\end{aligned}
$$

for $R=r^{2}=$ reflectance of single surface
$I_{0}=$ incident irradiance

Work out transmission in similar way
Find $E_{\text {trans }}=\left(\frac{1-r^{2}}{1-r^{2} e^{i \delta}}\right) \mathbf{E}_{0}$
and

$$
I_{\text {trans }}=\frac{1-2 R+R^{2}}{1+R^{2}-2 R \cos \delta} I_{0}
$$

Find that $I_{\text {trans }}=I_{0}-I_{\text {ref }}$ as expected

Recall $\delta=2 n k d \cos \theta_{m}$ depends on d, λ, θ
Plot $I_{\text {trans }} / I_{0}$ as function of δ

Transmission $=1$ when $\delta=2 \pi m$
Same condition for reflection $=0$ in original calc

Peaks narrower for higher R :
For $R \approx 1$, full width at half-max $=2(1-R)$

Can get R up to 0.99999
Very narrow transmission peaks:
useful for spectroscopy

Fabry-Perot spectrometer:

Scan mirror separation d :
Large transmission when $d=m \lambda / 2$

Suppose source has two frequencies ω_{1} and ω_{2}
Get two transmission peaks

Peaks at $d=m \lambda_{1} / 4$ and $d=m \lambda_{2} / 4$
(large integer m)

Peaks resolved if $\delta_{1}-\delta_{2}>\Delta \approx 2(1-R)$ where $\delta_{1}=2 k_{1} d$ and $\delta_{2}=2 k_{2} d$
Need $k_{1}-k_{2}>\frac{1-R}{d}$
or $\omega_{1}-\omega_{2}>(1-R) \frac{c}{d}$
If $R=0.999$ and $d=3 \mathrm{~cm}$, get $\Delta \omega=10^{7} \mathrm{rad} / \mathrm{s}$ or $\Delta \nu=1.6 \mathrm{MHz}$

This is incredible resolution:
Optical frequency $=6 \times 10^{14} \mathrm{~Hz}$
so $\Delta \nu / \nu \approx 10^{-9}$

If $\Delta \omega>c / 2 d$, peaks with different m 's overlap
Can't tell which m is which, so $\Delta \omega$ is ambiguous

Typically use grating to measure m

Summary:

- Interferometer $=$ device that measures phase
- Michelson: beamsplitter, mirrors control light
- Thin plate: two-beam interference

Can eliminate reflection

- Fabry-Perot: multiple-beam interference Useful for spectroscopy

