Gaussian Beams
Last time, discussed interferometers
Michelson
Fabry-Perot
Most useful with laser beams:
Coherent light makes interference obvious

Today, describe behavior of Iaser beams Really Gaussian beams

Outline:

- Recall solution
- Properties
- Beams and optical systems

None of this in Hecht See Saleh and Teich, chapter 3

Next week: study incoherent light

The Gaussian Beam

Actually derived already:
Lecture 15, slides 32-38
Start with Gaussian field at $z=0$

$$
E(x, y, 0)=E_{0} e^{-\left(x^{2}+y^{2}\right) / w_{0}^{2}}
$$

Use Fresnel approximation to get field at all z :

$$
E(x, y, z)=E_{0} \frac{w_{0}^{2}}{Q^{2}} e^{i k z} e^{\left(x^{2}+y^{2}\right) / Q^{2}}
$$

for $Q^{2}=w_{0}^{2}+i \frac{2 z}{k}$

Conform to conventional notation, change definition of Q :
Define $q=z-i \frac{k w_{0}^{2}}{2} \quad\left(=-i \frac{k}{2} \times Q^{2}\right)$
Then

$$
E(x, y, z)=-i E_{0}\left(\frac{\pi w_{0}^{2}}{\lambda q}\right) e^{i k z} e^{i k\left(x^{2}+y^{2}\right) / 2 q}
$$

Mathematically equivalent

Spend today exploring solution

Helpful to define

$$
z_{0}=\frac{k w_{0}^{2}}{2}=\frac{\pi w_{0}^{2}}{\lambda}
$$

\equiv Rayleigh length
Will see importance shortly

Convenient:
Have $q=z-i z_{0}$ and

$$
E(x, y, z)=-i E_{0} \frac{z_{0}}{q} e^{i k z} e^{i k\left(x^{2}+y^{2}\right) / 2 q}
$$

Properties

- Irradiance

$$
\begin{aligned}
I & =\frac{1}{2 \eta_{0}}|E|^{2} \\
& =I_{0} \frac{z_{0}^{2}}{|q|^{2}}\left[e^{i k \rho^{2} / 2 q} \times e^{-i k \rho^{2} / 2 q^{*}}\right]
\end{aligned}
$$

for $I_{0}=\left|E_{0}\right|^{2} /\left(2 \eta_{0}\right)$ and $\rho^{2}=x^{2}+y^{2}$
Total exponent is

$$
\frac{i k \rho^{2}}{2\left(z-i z_{0}\right)}-\frac{i k \rho^{2}}{2\left(z+i z_{0}\right)}=-\frac{k \rho^{2} z_{0}}{z^{2}+z_{0}^{2}}
$$

Write

$$
I(\rho, z)=I_{0} \frac{z_{0}^{2}}{z^{2}+z_{0}^{2}} e^{-2 \rho^{2} / w^{2}}
$$

where $w=w(z)=\sqrt{\frac{2}{k z_{0}}\left(z^{2}+z_{0}^{2}\right)}$
is the beam width at position z
Using $z_{0}=k w_{0}^{2} / 2$, have

$$
w(z)=w_{0} \sqrt{1+\frac{z^{2}}{z_{0}^{2}}}
$$

As beam propagates, width expands

Shows profile of beam as it travels

Minimum width $=w_{0}$ at $z=0$
Beam has focus at $z=0$

- called beam waist

Call $w_{0}=$ waist radius

For $|z| \ll z_{0}, w(z) \approx w_{0}$
At $z= \pm z_{0}$, width increased by $\sqrt{2}$
Rayleigh length \approx depth of focus
Gives length over which beam stays focused
Question: If I double the beam waist, what happens to the Rayleigh length?

For $z \gg z_{0}$, beam diverges
(Due to diffraction)
At large z

$$
w(z) \approx \frac{w_{0} z}{z_{0}}=\frac{\lambda}{\pi w_{0}} z
$$

Divergence angle $\theta=\lambda /\left(\pi w_{0}\right)$
$=$ minimum possible divergence for spot size w_{0}

Laser beams spread more slowly than other sources but they still spread

Example:
Suppose $\lambda=633 \mathrm{~nm}, w_{0}=2 \mathrm{~mm}$
Then $z_{0}=20 \mathrm{~m}$ and $\theta=100 \mu \mathrm{rad}$

Laser beam near focus is collimated
$=$ not diverging
Strange but true:
only place laser is collimated is at focus
Usually say "collimated" if z_{0} large
"focused" if z_{0} small

- Power

Total power in beam is

$$
\begin{aligned}
P & =\iint I(x, y) d x d y \\
& =2 \pi \int_{0}^{\infty} I(\rho, z) \rho d \rho
\end{aligned}
$$

Note

$$
\begin{aligned}
I(\rho, z) & =I_{0} \frac{z_{0}^{2}}{z^{2}+z_{0}^{2}} e^{-2 \rho^{2} / w^{2}} \\
& =I_{0} \frac{w_{0}^{2}}{w^{2}} e^{-2 \rho^{2} / w^{2}}
\end{aligned}
$$

So $P=\frac{2 \pi I_{0} w_{0}^{2}}{w^{2}} \int_{0}^{\infty} \rho e^{-2 \rho^{2} / w^{2}} d \rho$
Change variables $u=2 \rho^{2} / w^{2}$

$$
d u=\frac{4 \rho}{w^{2}} d \rho
$$

Then $P=\frac{\pi}{2} I_{0} w_{0}^{2} \int_{0}^{\infty} e^{-u} d u=\frac{\pi}{2} I_{0} w_{0}^{2}$
Here $I_{0}=$ max irradiance at center of focus
Usually measure P, want I_{0} :

$$
I_{0}=\frac{2 P}{\pi w_{0}^{2}}
$$

Generally

$$
I_{\max }(z)=\frac{2 P}{\pi w^{2}}
$$

Effective area of beam $=\pi w^{2} / 2$

- radius $w / \sqrt{2}$

Want larger radius if passing through aperture: 86% of power in $\rho<w$ 98% of power in $\rho<2 w$

Rule of thumb: make aperture diameter $=\pi w$ gives 95\% transmission

- Phase

Have

$$
E(x, y, z)=E_{0}\left(\frac{-i z_{0}}{q}\right) e^{i k z} e^{i k\left(x^{2}+y^{2}\right) / 2 q}
$$

with $q=z-i z_{0}$
Write $\frac{1}{q}=\frac{1}{z-i z_{0}}=\frac{z+i z_{0}}{z^{2}+z_{0}^{2}}$
Imaginary part:

$$
\frac{z_{0}}{z^{2}+z_{0}^{2}}=\frac{w_{0}^{2}}{z_{0} w^{2}}=\frac{\lambda}{\pi w^{2}}=\frac{2}{k w^{2}}
$$

using definitions of w and z_{0}

Real part:
Define $\frac{z}{z^{2}+z_{0}^{2}}=\frac{1}{R}$
So $\frac{1}{q}=\frac{1}{R}+\frac{2 i}{k w^{2}}$
Use in exponent:

$$
e^{i k \rho^{2} / 2 q}=e^{i k \rho^{2} / 2 R} e^{-\rho^{2} / w^{2}}
$$

Recognize phase and amplitude terms

Also write prefactor in polar form

$$
\begin{aligned}
\frac{-i z_{0}}{z-i z_{0}} & =\frac{1}{1+i\left(z / z_{0}\right)} \\
& =\frac{1}{\left|1+i\left(z / z_{0}\right)\right|} e^{-i \zeta}
\end{aligned}
$$

with

$$
\frac{1}{\left|1+i\left(z / z_{0}\right)\right|}=\frac{z_{0}}{\sqrt{z^{2}+z_{0}^{2}}}=\frac{w_{0}}{w}
$$

and

$$
\tan \zeta=\frac{z}{z_{0}}
$$

So express

$$
E=E_{0} \frac{w_{0}}{w} e^{i \phi} e^{-\rho^{2} / w^{2}}
$$

with phase

$$
\phi(z)=-\zeta(z)+k\left(z+\frac{\rho^{2}}{2 R(z)}\right)
$$

Rewrite

$$
\phi(z)=-\zeta+k(z-R)+k\left(R+\frac{\rho^{2}}{2 R}\right)
$$

Recognize $R+\rho^{2} /(2 R)$ as expansion of sphere wave

Radius of curvature R

For $|z| \gg z_{0}, R \rightarrow z$

- sphere wave centered at focus

For $|z| \ll z_{0}, R \rightarrow \infty$

- plane wave
= collimated, as before
Draw wave fronts:

On axis $\rho=0$ have $\phi=k z-\zeta(z)$
Like plane wave with extra phase $\zeta=\tan ^{-1}\left(z / z_{0}\right)$ called "Guoy" phase

180° phase shift through focus sometimes important

- Complex Radius

At position z, have $q=z-i z_{0}$
In general, $\operatorname{Re} z=$ distance to focus $\operatorname{Im} z=$ Rayleigh length of focus $(\times-1)$
From z_{0} get $w_{0}=\sqrt{\lambda z_{0} / \pi}$
So q specifies beam parameters at focus

Question: Suppose that a Gaussian beam is propagating in the $+z$ direction. At some position, you determine that $q=0.3 \mathrm{~m}-\mathrm{i} 0.05 \mathrm{~m}$. Where is the focus of the beam relative to your position?

But

$$
\frac{1}{q}=\frac{1}{R}+\frac{i \lambda}{\pi w^{2}}
$$

$R=$ radius of curvature at z
$w=$ beam width at z
So $1 / q$ specifies beam parameters at z

Inverting q :

Transforms between "local" properties at z and "focal" properties at $z=0$
q is useful: called complex beam radius

Beams and Lenses

What happens when we put Gaussian beam through lens?

Say incident beam has complex radius q
Thin lens, focal length f

Effect of lens:
Change center of curvature R
Spherical wave centered at $z=-s_{o}$
\rightarrow sphere wave centered at $z=s_{i}$
with $\frac{1}{s_{o}}+\frac{1}{s_{i}}=\frac{1}{f}$
Here $s_{o}=R_{\text {in }}$

$$
s_{i}=-R_{\text {out }}
$$

So

$$
\frac{1}{R_{\text {out }}}=\frac{1}{R_{\mathrm{in}}}-\frac{1}{f}
$$

Beam width doesn't change
So $\frac{1}{q_{\text {out }}}=\frac{1}{R_{\text {out }}}+i \frac{\lambda}{\pi w^{2}}$

$$
=\frac{1}{R_{\mathrm{out}}}-\frac{1}{f}+i \frac{\lambda}{\pi w^{2}}
$$

$$
\frac{1}{q_{\mathrm{out}}}=\frac{1}{q_{\mathrm{in}}}-\frac{1}{f}
$$

This is transformation law for Gaussian beam

Example: Suppose a Gaussian beam with $\lambda=633 \mathrm{~nm}$ has a focus with spot size $w_{0}=75 \mu \mathrm{~m}$. A lens with $f=25$ mm is placed a distance 50 mm after the focus. At what position is the light refocused after the lens, and what beam waist is obtained?

Solution:

Incident beam has $q=z-i z_{0}$ for $z=50 \mathrm{~mm}$ and $z_{0}=$ $\pi w_{0}^{2} / \lambda=28 \mathrm{~mm}$. So

$$
\frac{1}{q_{\mathrm{in}}}=\frac{1}{50-28 i}=0.0152+i 0.0085 \mathrm{~mm}^{-1}
$$

Then

$$
\frac{1}{q_{\text {out }}}=\frac{1}{q_{\text {in }}}-\frac{1}{f}=-0.0248+i 0.0085 \mathrm{~mm}^{-1}
$$

Invert to get $q_{\text {Out }}=-36-i 12.4 \mathrm{~mm}$.
So light is refocused 36 mm after lens.
Beam waist $w_{0}=\sqrt{\lambda z_{0} / \pi}=50 \mu \mathrm{~m}$.

Note ray optics predicts focus at

$$
\frac{1}{s_{i}}=\frac{1}{f}-\frac{1}{s_{o}}=\frac{1}{25}-\frac{1}{50}=\frac{1}{50} \mathrm{~mm}^{-1}
$$

which is incorrect

Beams and Ray Matrices

General optical system described by ray matrix

$$
\mathcal{M}=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]
$$

Transforms ray vector

$$
\mathbf{v}=\left[\begin{array}{c}
n \alpha \\
y
\end{array}\right]
$$

with $\mathbf{v}_{\text {out }}=\mathcal{M} \mathbf{v}_{\text {in }}$
Useful for thick lenses, multilens systems

Relate to Gaussian beams

Recall \mathcal{M} composed of two elements:

- Refraction matrix

$$
\mathcal{R}=\left[\begin{array}{cc}
1 & -\mathcal{D} \\
0 & 1
\end{array}\right]
$$

where $\mathcal{D}=$ refractive power of element
For thin lens $\mathcal{D}=1 / f$

- Transfer matrix

$$
\mathcal{T}=\left[\begin{array}{cc}
1 & 0 \\
d / n & 1
\end{array}\right]
$$

$d=$ propagation distance, $n=$ index

Get effect of elements on Gaussian beam
Refraction: for lens have

$$
\frac{1}{q_{\mathrm{out}}}=\frac{1}{q_{\mathrm{in}}}-\frac{1}{f}
$$

Generally get

$$
\frac{1}{q_{\mathrm{out}}}=\frac{1}{q_{\mathrm{in}}}-\mathcal{D}=\frac{1}{q_{\mathrm{in}}}+B
$$

where $B=$ element of \mathcal{R} matrix
So

$$
q_{\mathrm{out}}=\frac{1}{1 / q_{\mathrm{in}}+B}=\frac{q_{\mathrm{in}}}{1+B q_{\mathrm{in}}}
$$

Free propagation:
Have $q=z-i z_{0}$
Free propagation just changes z :

$$
q_{\mathrm{out}}=q_{\mathrm{in}}+d
$$

Modified in medium: wavelength is different
Define $\lambda, k=$ values in vacuum
$\lambda^{\prime}, k^{\prime}=$ values in medium
So $\lambda^{\prime}=\lambda / n$ and $k^{\prime}=n k$

Then in medium have $z_{0}^{\prime}=\pi w_{0}^{2} / \lambda^{\prime}=n z_{0}$

$$
\text { and } q^{\prime}=z-i z_{0}^{\prime}
$$

Field evolves as

$$
\begin{aligned}
E(z) & =-i E_{0} \frac{z_{0}^{\prime}}{q^{\prime}} e^{i k^{\prime} z} e^{i k^{\prime} \rho^{2} / 2 q^{\prime}} \\
& =-i E_{0} \frac{n z_{0}}{z-i n z_{0}} e^{i k^{\prime} z} \exp \left[\frac{i n k \rho^{2}}{2\left(z-i n z_{0}\right)}\right] \\
& =-i E_{0} \frac{z_{0}}{z / n-i z_{0}} e^{i k^{\prime} z} \exp \left[\frac{i k \rho^{2}}{2\left(z / n-i z_{0}\right)}\right] \\
& =-i E_{0} \frac{z_{0}}{q} e^{i k^{\prime} z} e^{i k \rho^{2} / 2 q}
\end{aligned}
$$

for $q=z / n-i z_{0}$

Ignoring overall phase, distance d in medium has

$$
q_{\mathrm{out}}=q_{\mathrm{in}}+\frac{d}{n}
$$

In terms of ray matrix \mathcal{T}

$$
q_{\mathrm{out}}=q_{\mathrm{in}}+C
$$

Get effect of both \mathcal{R} and \mathcal{T} with

$$
q_{\text {out }}=\frac{C+D q_{\text {in }}}{A+B q_{\text {in }}}
$$

Formula works for multiple systems too
Suppose $\mathcal{M}_{1}=\left[\begin{array}{ll}A_{1} & B_{1} \\ C_{1} & D_{1}\end{array}\right]$ and $\mathcal{M}_{2}=\left[\begin{array}{ll}A_{2} & B_{2} \\ C_{2} & D_{2}\end{array}\right]$
Then for arbitrary q_{0} let

$$
q_{1}=\frac{C_{1}+D_{1} q_{0}}{A_{1}+B_{1} q_{0}}
$$

($=$ output of element 1)

$$
q_{2}=\frac{C_{2}+D_{2} q_{1}}{A_{2}+B_{2} q_{1}}
$$

($=$ output of element 2)

Substitute for q_{1}, find

$$
q_{2}=\frac{C_{T}+D_{T} q_{0}}{A_{T}+B_{T} q_{0}}
$$

for $\left(A_{T}, B_{T}, C_{T}, D_{T}\right)$ satisfying

$$
\left[\begin{array}{ll}
A_{T} & B_{T} \\
C_{T} & D_{T}
\end{array}\right]=\left[\begin{array}{ll}
A_{2} & B_{2} \\
C_{2} & D_{2}
\end{array}\right]\left[\begin{array}{ll}
A_{1} & B_{1} \\
C_{1} & D_{1}
\end{array}\right]
$$

So q_{0} related to q_{2} by system matrix

$$
\mathcal{M}_{T}=\mathcal{M}_{2} \mathcal{M}_{1}
$$

Works for any number of elements
For arbitrary system with $\mathcal{M}=\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]$
have $q_{\text {out }}=\frac{C+D q_{\text {in }}}{A+B q_{\text {in }}}$
Easy to find Gaussian beam output of any paraxial system

Important:
Various conventions for \mathcal{M} and \mathbf{v}

Laser books usually have

$$
q_{\mathrm{out}}=\frac{A q_{\mathrm{in}}+B}{C q_{\mathrm{in}}+D}
$$

Elements of \mathcal{M} rearranged

Also $\lambda=$ wavelength in medium
not wavelength in vacuum

Summary

- Laser beams \approx Gaussian beam solution
- Collimated at focus, diverge at ∞
- Rayleigh length $z_{0}=$ depth of focus
- z_{0} small if w_{0} small
- Use ray matrices for propagation

