Phys 531Lecture 252 December 2004Coherence Theory: Spatial

Last time, developed theory for incoherent sources

Temporal incoherence:

Wave fluctuates randomly in time

Today, generalize to spatial incoherence: Wave fluctuates randomly in space Get spatial fluctuations from extended sources

1

Outline:

- Review temporal coherence
- Interference with extended sources
- van Cittert-Zernike theorem
- Mutual coherence function
- Michelson interferometer

Material from Hecht Ch 12

Next time: quantum optics

Last class: review for final

Info on final posted on discussion board

Review Temporal Coherence

Random waves characterized by coherence time au_c

Over times $\ll \tau_c$: oscillations are regular

Over times $\gg \tau_c$: wave fluctuates

Characterize with temporal coherence function

 $\Gamma(\tau) = \langle E(t+\tau)E^*(t) \rangle$

or complex degree of temporal coherence

$$\gamma(\tau) = \frac{\Gamma(\tau)}{\Gamma(0)}$$

1	_	
1	2	
	.)	
	_	

Have $|\gamma(0)| = 1$

Amplitude decreases over time scale τ_c

Phase of γ oscillates at average frequency ω_0

Typical behavior:

For interferometer with path-length difference h:

Get fringe visibility
$$\mathcal{V} = \left| \gamma \left(\frac{h}{c} \right) \right|$$

where $\mathcal{V} = \frac{I_{\text{max}} - I_{\text{min}}}{I_{\text{max}} + I_{\text{min}}}$

 Γ also related to spectrum of light Power spectral density

$$S(\omega) = \frac{1}{2\eta_0} \int_{-\infty}^{\infty} \Gamma(\tau) e^{-i\omega\tau} d\tau$$

Then $S(\omega)\Delta\omega$ = total irradiance in frequency range ω to $\omega + \Delta\omega$

5

Extended Sources (Hecht 12.2)

So far, considered waves from point source (recall plane wave = point source at ∞)

No problem writing down $E(\mathbf{r})$ Have spherical wave, plane wave, or dipole pattern

What if source is extended object?

= collection of many points

Suppose source monochromatic, frequency ω

Still have incoherence:

phase of source varies from point to point

7

Average over phases:

No interference between fields from different points

Add irradiances to get total pattern

Question: If the phases are random but constant, don't you get some unpredictable but steady interference pattern?

Reduces visibility of interference

Example: two slit interference

Distant extended source: subtends angle η

Slit spacing \boldsymbol{a}

For point source at normal incidence, have interference pattern

 $I(\theta) \approx I_0 \left[1 + \cos(ka\theta)\right]$

For point source at angle η' have

$$I(\theta; \eta') \approx I_0 \left[1 + \cos ka(\theta - \eta')\right]$$

For extended source, average over η' :

$$I_{\text{tot}}(\theta) = \frac{1}{\eta} \int_{-\eta/2}^{\eta/2} I(\theta; \eta') \, d\eta'$$

9

We can evaluate this:

$$I_{\text{tot}}(\theta) = I_0 \left[1 + \frac{1}{\eta} \int_{-\eta/2}^{\eta/2} \cos ka(\theta - \eta') d\eta' \right]$$

Set $u = ka(\theta - \eta')$
$$I_{\text{tot}}(\theta) = I_0 \left[1 + \frac{1}{ka\eta} \int_{ka(\theta - \eta/2)}^{ka(\theta + \eta/2)} \cos u \, du \right]$$
$$= I_0 \left[1 + \frac{\sin ka(\theta + \eta/2) - \sin ka(\theta - \eta/2)}{ka\eta} \right]$$

1	1
т	т

Expand sines using

$$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \sin \beta \cos \alpha$$

Then $sin(ka\theta)$ terms cancel, leaves

$$I_{\text{tot}}(\theta) = I_0 \left[1 + \frac{2}{ka\eta} \sin\left(\frac{ka\eta}{2}\right) \cos(ka\theta) \right]$$
$$= I_0 \left[1 + \operatorname{sinc}\left(\frac{ka\eta}{2}\right) \cos(ka\theta) \right]$$

Get visibility

$$\mathcal{V} = \left| \operatorname{sinc} \left(\frac{ka\eta}{2} \right) \right|$$

See that $\mathcal{V} < 1$

Decreases for large η and large a

To have large \mathcal{V} , need $a\ll\lambda/\eta$

13

Leads to idea of spatial coherence:

Field at slit 1 is not completely coherent with field at slit 2

= no definite phase relationship

- Due to indefinite phase between different points on source

In two-slit example, see that field is coherent over distance $\rho_c\approx\lambda/\eta$

For point source $\eta \rightarrow 0$ so $\rho_c \rightarrow \infty$

Call ρ_c = lateral (or transverse) coherence length

- $a \ll \rho_c$, can treat as point source
- $a \gg \rho_c$, no interference

Generally true that

$$\rho_c \approx \frac{\lambda}{\eta}$$

for source subtending angle η

Question: For a source consisting of two points separated by angle η , the interference pattern is lost when the slit separation $a = \lambda/2\eta$. Is there a simple way to see this?

15

Example: star α -Centauri distance $d = 4.1 \times 10^{16}$ m diameter $D = 1.7 \times 10^{9}$ m

So $\eta = D/d = 4 \times 10^{-8}$ rad

 $ho_c \approx$ 12 m for visible light ($\lambda =$ 500 nm)

Could observe interference with slits 12 m apart

(hard to achieve in practice)

Also:

Require 12 m diameter telescope to resolve disc (over distances < 12 m, acts like point source)

Spatial Coherence Function (Hecht 12.3)

General way to calculate visibility:

Suppose interferometer samples source fields

$$E_1 = E(\mathbf{r}_1)$$
$$E_2 = E(\mathbf{r}_2)$$

In two slit interferometer, \mathbf{r}_1 and \mathbf{r}_2 = positions of slits

Let fields propagate, acquire phases ϕ_1 and ϕ_2 before overlapping

Final field

$$E_{\text{tot}} = E_1 e^{i\phi_1} + E_2 e^{i\phi_2}$$

17

Interference depends on $\epsilon = \phi_1 - \phi_2$:

$$\left\langle |E_{\text{tot}}|^2 \right\rangle = \left\langle |E_1|^2 \right\rangle + \left\langle |E_2|^2 \right\rangle + \left\langle E_1 E_2^* \right\rangle e^{i\epsilon} + \left\langle E_1^* E_2 \right\rangle e^{-i\epsilon}$$

In two-slit example, $\epsilon = ka\theta$

from extra propagation distance

Define spatial coherence function

 $\Gamma_{12} = \langle E_1 E_2^* \rangle = \langle E(\mathbf{r}_1) E^*(\mathbf{r}_2) \rangle$

Analogous to $\Gamma(\tau)$

Here average =

average over random phases of source

Write $\Gamma_{12} = |\Gamma_{12}|e^{i\phi}$:

Then

$$\begin{split} \left\langle |E_{\text{tot}}|^2 \right\rangle &= \Gamma_{11} + \Gamma_{22} + |\Gamma_{12}|e^{i(\phi+\epsilon)} + |\Gamma_{12}|e^{-i(\phi+\epsilon)} \\ &= \Gamma_{11} + \Gamma_{22} + 2|\Gamma_{12}|\cos(\phi+\epsilon) \\ \end{split}$$

Here $\Gamma_{11} &= \left\langle |E_1|^2 \right\rangle = 2\eta_0 I_1$
similar for Γ_{22}
So Γ_{12} determines interference pattern

19

For point source, don't need to average:

$$|\Gamma_{12}| = |E_1||E_2| = \sqrt{\Gamma_{11}\Gamma_{22}}$$

So define complex degree of spatial coherence

$$\gamma_{12} = \frac{\Gamma_{12}}{\sqrt{\Gamma_{11}\Gamma_{22}}}$$

Have 0 $< |\gamma_{12}| < 1$

Visibility of interference pattern is

$$\mathcal{V} = \frac{2\sqrt{I_1 I_2}}{I_1 + I_2} |\gamma_{12}|$$

just as for temporal coherence

van-Cittert–Zernike Theorem (Hecht 12.3.1) For temporal coherence, can't calculate $\Gamma(\tau)$ But can calculate Γ_{12} from source geometry

Characterize source by brightness
$$B(X, Y)$$

Recall $B = \frac{power}{solid angle \cdot area}$ emitted by source
So $B(X, Y) dXdY = W/srad$

emitted by area dX dY on source

21

Suppose B(X, Y) has transform $\mathcal{B}(k_x, k_y)$

If r_1 and r_2 are a distance d from source with $d \gg |r_1 - r_2|$ and $d \gg$ source size

Then find

$$\gamma_{12} = \frac{1}{\mathcal{L}} \mathcal{B}\left[\frac{k(x_1 - x_2)}{d}, \frac{k(y_1 - y_2)}{d}\right]$$

with $\mathcal{L} = \mathcal{B}(0,0) = \iint B(X,Y) \, dX \, dY$

Same as far-field diffraction pattern produced by aperture equal to source

Won't prove, but saw example already:

Line source length b subtends angle $\eta=b/d$ From previous calculation

$$\gamma_{12} = \operatorname{sinc}\left(\frac{ka\eta}{2}\right) = \operatorname{sinc}\left[\frac{k(x_1 - x_2)b}{2d}\right]$$

Same as single-slit diffraction pattern

So circular source diameter D gives

$$\gamma_{12} = \frac{4d}{k\rho D} J_1\left(\frac{k\rho D}{2d}\right)$$
 for $\rho = |\mathbf{r}_1 - \mathbf{r}_2|$

\sim	2
2	S

Mutual Coherence Function (Hecht 12.3) In general, both spatial and temporal fluctuations Define *mutual coherence function*

 $\Gamma_{12}(\tau) = \langle E(\mathbf{r}_1, t+\tau) E^*(\mathbf{r}_2, t) \rangle$

Here average over time and source phases

Define complex degree of coherence

$$\gamma_{12}(\tau) = \frac{\Gamma_{12}(\tau)}{\sqrt{\Gamma_{11}(0)\Gamma_{22}(0)}}$$

If interferometer samples source field at $\mathbf{r}_1,~\mathbf{r}_2$ and interfers fields with time delay $\tau:$

Get visibility $\mathcal{V} = |\gamma_{12}(\tau)|$

Note that space and time coherence intermixed

Here r_1 sees field at earlier time that r_2 temporal fluctuations contribute to $\gamma_{12}(0)$

25

Use τ only for time delay after sampling field

Example:

Here want $\gamma_{12}(\tau)$ for $\tau = h/c$

Note van Cittert-Zernike theorem only applies to nearly monochromatic source

Michelson Interferometer

Michelson is special case: spatial coherence unnecessary

To analyze, look at virtual sources produced by mirrors:

Sources separated by path length difference h

And displaced by θd

 $d = \operatorname{arm}$ length, $\theta = \operatorname{mirror}$ tilt

²⁷

Detect at focal plane of lens

All rays at angle α imaged to point ${\bf r}$

Light from \mathbf{r}_1 interfers only with light from \mathbf{r}_1' Path difference $11' = h/\cos \alpha$

Same as path difference 22'

29

So light from all points reaching ${\bf r}$ has same phase See interference pattern as function of α

In Michelson demo: source = frosted glass illuminated with laser lens = camera lens detector = CCD

Note, no interference observed without lens Lens is good trick to recover interference Summary:

- \bullet Extended source usually decreases ${\cal V}$
- Characterize spatial coherence with Γ_{12} $\Gamma_{12} = \langle E(\mathbf{r}_1) E(\mathbf{r}_2)^* \rangle$
- Lateral coherence length $\rho_c \approx \lambda/\eta$ η = angle subtended by source
- Get Γ_{12} from van Cittert-Zernike
- Both time and space coherence: $\Gamma_{12}(\tau)$
- Michelson works with extended source when using lens

31