
Phys 531 Lecture 25 2 December 2004

Coherence Theory: Spatial

Last time, developed theory for incoherent sources

Temporal incoherence:

Wave fluctuates randomly in time

Today, generalize to spatial incoherence:

Wave fluctuates randomly in space

Get spatial fluctuations from extended sources
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Outline:

• Review temporal coherence

• Interference with extended sources

• van Cittert-Zernike theorem

• Mutual coherence function

• Michelson interferometer

Material from Hecht Ch 12

Next time: quantum optics

Last class: review for final

Info on final posted on discussion board

2



Review Temporal Coherence

Random waves characterized by coherence time τc

Over times � τc: oscillations are regular

Over times � τc: wave fluctuates

Characterize with temporal coherence function

Γ(τ) = 〈E(t + τ)E∗(t)〉
or complex degree of temporal coherence

γ(τ) =
Γ(τ)

Γ(0)
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Have |γ(0)| = 1

Amplitude decreases over time scale τc

Phase of γ oscillates at average frequency ω0

Typical behavior:
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For interferometer with path-length difference h:

Get fringe visibility V =
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where V =
Imax − Imin

Imax + Imin
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Γ also related to spectrum of light

Power spectral density

S(ω) =
1

2η0

∫ ∞

−∞
Γ(τ)e−iωτdτ

Then S(ω)∆ω = total irradiance
in frequency range ω to ω + ∆ω
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Extended Sources (Hecht 12.2)

So far, considered waves from point source

(recall plane wave = point source at ∞)

No problem writing down E(r)

Have spherical wave, plane wave, or dipole pattern

What if source is extended object?

= collection of many points

Suppose source monochromatic, frequency ω

Still have incoherence:

phase of source varies from point to point
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Phases random      

so
ur

ce

Average over phases:

No interference between fields from different points

Add irradiances to get total pattern

Question: If the phases are random but constant, don’t you

get some unpredictable but steady interference pattern?

8



Reduces visibility of interference

Example: two slit interference

Distant extended source: subtends angle η

θη

so
ur

ce

Slit spacing a
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For point source at normal incidence,

have interference pattern

I(θ) ≈ I0 [1 + cos(kaθ)]

For point source at angle η′ have

I(θ; η′) ≈ I0
[

1 + cos ka(θ − η′)
]

For extended source, average over η′:

Itot(θ) =
1

η

∫ η/2

−η/2
I(θ; η′) dη′
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We can evaluate this:

Itot(θ) = I0

[

1 +
1

η

∫ η/2

−η/2
cos ka(θ − η′) dη′

]

Set u = ka(θ − η′)

Itot(θ) = I0

[

1 +
1

kaη

∫ ka(θ+η/2)

ka(θ−η/2)
cosu du

]

= I0

[

1 +
sin ka(θ + η/2) − sin ka(θ − η/2)

kaη

]
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Expand sines using

sin(α + β) = sinα cos β + sinβ cosα

Then sin(kaθ) terms cancel, leaves

Itot(θ) = I0

[

1 +
2

kaη
sin

(

kaη

2

)

cos(kaθ)

]

= I0

[

1 + sinc

(

kaη

2

)

cos(kaθ)

]

Get visibility

V =

∣

∣

∣

∣

sinc

(

kaη

2

)
∣

∣

∣

∣
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See that V < 1

Decreases for large η and large a

To have large V, need a � λ/η
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Leads to idea of spatial coherence:

Field at slit 1 is not completely coherent

with field at slit 2

= no definite phase relationship

- Due to indefinite phase between different points

on source

In two-slit example, see that field is coherent

over distance ρc ≈ λ/η

For point source η → 0 so ρc → ∞
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Call ρc = lateral (or transverse) coherence length

a � ρc, can treat as point source

a � ρc, no interference

Generally true that

ρc ≈ λ

η

for source subtending angle η

Question: For a source consisting of two points separated

by angle η, the interference pattern is lost when the slit

separation a = λ/2η. Is there a simple way to see this?
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Example: star α-Centauri

distance d = 4.1 × 1016 m

diameter D = 1.7 × 109 m

So η = D/d = 4 × 10−8 rad

ρc ≈ 12 m for visible light (λ = 500 nm)

Could observe interference with slits 12 m apart

(hard to achieve in practice)

Also:

Require 12 m diameter telescope to resolve disc

(over distances < 12 m, acts like point source)
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Spatial Coherence Function (Hecht 12.3)

General way to calculate visibility:

Suppose interferometer samples source fields

E1 = E(r1)

E2 = E(r2)

In two slit interferometer, r1 and r2

= positions of slits

Let fields propagate, acquire phases φ1 and φ2

before overlapping

Final field

Etot = E1eiφ1 + E2eiφ2
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Interference depends on ε = φ1 − φ2:
〈

|Etot|2
〉

=
〈

|E1|2
〉

+
〈

|E2|2
〉

+〈E1E∗
2〉 eiε+〈E∗

1E2〉 e−iε

In two-slit example, ε = kaθ

from extra propagation distance

Define spatial coherence function

Γ12 = 〈E1E∗
2〉 = 〈E(r1)E

∗(r2)〉

Analogous to Γ(τ)

Here average =

average over random phases of source
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Write Γ12 = |Γ12|eiφ:

Then
〈

|Etot|2
〉

= Γ11 + Γ22 + |Γ12|ei(φ+ε) + |Γ12|e−i(φ+ε)

= Γ11 + Γ22 + 2|Γ12| cos(φ + ε)

Here Γ11 =
〈

|E1|2
〉

= 2η0I1
similar for Γ22

So Γ12 determines interference pattern
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For point source, don’t need to average:

|Γ12| = |E1||E2| =
√

Γ11Γ22

So define complex degree of spatial coherence

γ12 =
Γ12√

Γ11Γ22

Have 0 < |γ12| < 1

Visibility of interference pattern is

V =
2
√

I1I2
I1 + I2

|γ12|

just as for temporal coherence
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van-Cittert–Zernike Theorem (Hecht 12.3.1)

For temporal coherence, can’t calculate Γ(τ)

But can calculate Γ12 from source geometry

Characterize source by brightness B(X, Y )

Recall B =
power

solid angle · area emitted by source

So B(X, Y ) dXdY = W/srad

emitted by area dX dY on source
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Suppose B(X, Y ) has transform B(kx, ky)

If r1 and r2 are a distance d from source

with d � |r1 − r2| and d � source size

Then find

γ12 =
1

L
B

[

k(x1 − x2)

d
,
k(y1 − y2)

d

]

with L = B(0,0) =
∫∫

B(X, Y ) dX dY

Same as far-field diffraction pattern produced by

aperture equal to source
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Won’t prove, but saw example already:

Line source length b subtends angle η = b/d

From previous calculation

γ12 = sinc

(

kaη

2

)

= sinc

[

k(x1 − x2)b

2d

]

Same as single-slit diffraction pattern

So circular source diameter D gives

γ12 =
4d

kρD
J1

(

kρD

2d

)

for ρ = |r1 − r2|
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Mutual Coherence Function (Hecht 12.3)

In general, both spatial and temporal fluctuations

Define mutual coherence function

Γ12(τ) = 〈E(r1, t + τ)E∗(r2, t)〉

Here average over time and source phases

Define complex degree of coherence

γ12(τ) =
Γ12(τ)

√

Γ11(0)Γ22(0)
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If interferometer samples source field at r1, r2

and interfers fields with time delay τ :

Get visibility V = |γ12(τ)|

Note that space and time coherence intermixed

r1 r2  

Here r1 sees field at earlier time that r2

temporal fluctuations contribute to γ12(0)
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Use τ only for time delay after sampling field

Example:

r1 r2  

h

Here want γ12(τ) for τ = h/c

Note van Cittert-Zernike theorem only applies to

nearly monochromatic source
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Michelson Interferometer

Michelson is special case:

spatial coherence unnecessary
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To analyze, look at virtual sources produced by

mirrors:

S1

S2
f

Sources separated by path length difference h

And displaced by θd

d = arm length, θ = mirror tilt
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Detect at focal plane of lens

All rays at angle α imaged to point r

α1

1’

2

2’

h

Light from r1 interfers only with light from r
′
1

Path difference 11’ = h/ cosα

Same as path difference 22’
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So light from all points reaching r has same phase

See interference pattern as function of α

In Michelson demo:

source = frosted glass illuminated with laser

lens = camera lens

detector = CCD

Note, no interference observed without lens

Lens is good trick to recover interference
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Summary:

• Extended source usually decreases V

• Characterize spatial coherence with Γ12

Γ12 = 〈E(r1)E(r2)
∗〉

• Lateral coherence length ρc ≈ λ/η

η = angle subtended by source

• Get Γ12 from van Cittert-Zernike

• Both time and space coherence: Γ12(τ)

• Michelson works with extended source

when using lens
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