Phys $531 \quad$ Lecture 27 December 2004
Final Review
Last time: introduction to quantum optics

Photon optics: energy comes in packets $\hbar \omega$
Field theory: E is quantum operator has quantum fluctuations, entanglement

Today:
Summarize everything

Outline:

- Course evaluations
- Final exam format
- Summary, key points
- Questions

Course Evaluations

Actually three evaluations:

- CGEP online evaluation

Online form in email

- Physics department paper evaluation

Fill out in class today

- Blackboard evaluation

Survey on blackboard site

Why so many evaluations?

- CGEP:

Used by distance learning program to evaluate instructor and suitability of course for program

- Department:

Main method for instructor evaluation Impacts teaching assignments and salary

- Blackboard:

For me and continuing ed. coordinator First use of Blackboard for science course So they're all important!

Final Exam
Schedule:
In class: Friday December 17, 2:00-5:00 PM

Off-site: Thursday December 16, 12:30-3:30 PM (minimize disruption of schedules)
Try to have video up for questions

Special arrangement: other times
Confirm with me by email

Format:
Eight problems, 10 points each
Partial credit on all
Can use:

- Lecture notes
- Homework assignments and solutions
- Textbook

But you won't have lots of time to read!

Bring a calculator
Scratch paper provided or bring your own

Problems have varying difficulty: do easy ones first!

No long calculations
(if you know what you're doing)

Don't waste time on algebra:
Explain what you want to do and move on

Content:

Comprehensive, over full course
Roughly $1 / 3$ from before midterm
2/3 from after midterm

All drawn from lectures, but book useful for a several questions

Review

I. Maxwell's equations
II. Ray Optics
III. Fourier Optics
IV. Special Topics

Review key points from each

I. Maxwell's Equations

A. Maxwell \rightarrow wave equation

Light is a wave

- Electric and magnetic fields oscillate
- Energy related to field amplitudes

$$
I=\frac{\left|E_{0}\right|^{2}}{2 \eta_{0}}
$$

- Simplest solution $=$ plane wave

Complex representation $E=E_{0} e^{i(\mathbf{k} \cdot \mathbf{r}-\omega t)}$
B. Light in matter: Two pictures Index of refraction and scattered waves

Index: $v=c / n$

$$
\begin{aligned}
& \lambda=\lambda_{0} / n \\
& \mathbf{k}=n \mathbf{k}_{0}
\end{aligned}
$$

Easy way to include wave scattered by medium
Gives correct results

Scattering: $E_{\mathrm{tot}}=E_{\text {inc }}+E_{\mathrm{scat}}$ Scattered field produced at $\mathbf{r} \propto E(\mathbf{r})$

Sometimes easier to understand
C. Interfaces

Snell's Law, Law of Reflection:
Direction of transmitted, reflected waves
Understand both with Fermat's Principle

Fresnel equations:
Amplitude of transmitted, reflected waves
Generally complex:

- Total internal reflection
- Metallic media

II. Ray Optics

A. Thin lenses (paraxial limit)

$$
\frac{1}{s_{i}}+\frac{1}{s_{o}}=\frac{1}{f}
$$

Sign conventions important
Curved mirror \approx lens with $f=-R / 2$
B. Stops

Set field of view and brightness of image
When cascading systems, want exit pupil of first and entrance pupil of second to coincide
C. Optical Systems

- Cascade multiple elements with ray matrices

$$
\begin{aligned}
& \mathcal{M}_{\mathrm{tot}}=\mathcal{M}_{N} \mathcal{M}_{N-1} \ldots \mathcal{M}_{2} \mathcal{M}_{1} \\
& \mathbf{v}_{\mathrm{out}}=\mathcal{M}_{\mathrm{tot}} \mathbf{v}_{\mathrm{in}}
\end{aligned}
$$

- System ray matrix also gives thick lens picture:

Arb. system like thin lens
"Input" at front principle plane
"Output" at back principle plane

- Aberrations limit performance

Calculate with exact ray tracing

III. Fourier Optics

A. Fourier transform

$$
\begin{aligned}
& \mathcal{E}(\mathbf{k})=\iiint E(\mathbf{r}) e^{-i \mathbf{k} \cdot \mathbf{r}} d^{3} r \\
& E(\mathbf{r})=\frac{1}{(2 \pi)^{3}} \iiint \mathcal{E}(\mathbf{k}) e^{i \mathbf{k} \cdot \mathbf{r}} d^{3} k
\end{aligned}
$$

Express any field as sum of plane waves

Evaluate using table and shifting properties

B. Propagation

Given $E(x, y, 0)=A(x, y)$, get $\mathcal{A}\left(k_{x}, k_{y}\right)$
Each component $e^{i\left(k_{x} x+k_{y} y\right)} \rightarrow e^{i\left(k_{x} x+k_{y} y+\kappa z\right)}$

$$
\text { with } \kappa=\sqrt{k^{2}-k_{x}^{2}-k_{y}^{2}}
$$

Convolution form:

$$
E(x, y, z)=\iint A(X, Y) h(X-x, Y-y) d X d Y
$$

with $h=$ inverse transform of $e^{i \kappa z}$

Either way, $E(x, y, z)$ determined by $A(x, y)$

C. Diffraction

- Fresnel: small angle (paraxial)

$$
\kappa \approx k-\frac{k_{x}^{2}+k_{y}^{2}}{2 k}
$$

- Fraunhofer: Iarge distance

Get

$$
E(x, y, d) \approx-\frac{i}{\lambda d} e^{i \phi} \mathcal{A}\left(\frac{k x}{d}, \frac{k y}{d}\right)
$$

So $k_{x} \rightarrow k x / d=k \theta_{x}$ and $k_{y} \rightarrow k y / d=k \theta_{y}$
D. Applications

- Grating: sharp lines good for spectroscopy
- Lens: Fraunhofer pattern in focal plane
- Fourier filter: use aperture to modify transform
- Holography: make aperture function to create arbitrary diffracted field

IV. Special Topics

A. Polarization

Vector nature of electric field

Polarization states:

- Linear: E oscillates in plane
- Circular: E rotates in circle
- Elliptical: E traces out ellipse (most general)

Polarization components:

- Polarizer: transmits one state blocks orthogonal state
- Quarter-wave plate:
converts linear \leftrightarrow circular
- Half-wave plate:
rotates plane of linear polarization

Calculate effects with Jones matrices

B. Interferometers

Device that exhibits interference
Basic equation: $E_{\mathrm{tot}}=E_{1}+E_{2}$

$$
\Rightarrow I_{\mathrm{tot}}=I_{1}+I_{2}+2 \sqrt{I_{1} I_{2}} \cos \phi
$$

$\phi=$ phase difference between E_{1} and E_{2}

Examples:

- Two slits: simplest
- Michelson: most common
- Fabry-Perot: multiple reflections

Useful for spectroscopy

C. Gaussian Beams

Good approximation to laser beam
Characteristic $I(\rho)=I_{0} e^{-2 \rho^{2} / w^{2}}$
Remains focussed over length $z_{0}=\pi w_{0}^{2} / \lambda$

Propagate using $q=z-i z_{0}$
Optical system: $q_{\text {in }}$ and $q_{\text {out }}$ related by
ray matrix
D. Coherence Theory

Theory of random waves
Temporal: when $E(t)$ fluctuates
Polychromatic light
Spatial: when $E(r)$ fluctuates
Extended light source
Generally have both fluctuations

Handle with $\Gamma_{12}(\tau)=\left\langle E\left(\mathbf{r}_{1}, t+\tau\right) E^{*}\left(\mathbf{r}_{2}, t\right)\right\rangle$
Gives contrast of interference pattern
Also $\Gamma_{11}(\tau) \rightarrow S(\omega)$ power spectral density
E. Quantum Optics

Light comes in packets called photons Energy $=\hbar \omega$

But photons still propagate as wave

Quantum field theory:
Not on final

Questions?

