Phys 531 Lecture 3 9 September 2004

Light in Matter (Healt Ch. 2)

Light in Matter (Hecht Ch. 3)

Last time, talked about light in vacuum:

Maxwell equations \rightarrow wave equation

Light = EM wave

1

Today: What happens inside material?
typical example: glass
Important for understanding lenses, prisms etc.

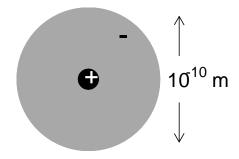
Consider:

- effect on Maxwell Eqns
- index of refraction
- atomic model for index

Next time: another perspective on same question

What is matter? Collection of atoms

The atom:



More detail: use quantum mechanics
- plan to avoid here

3

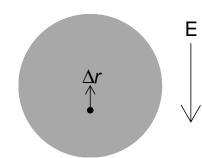
So, matter contains charges: can't set ρ , J = 0 in Maxwell equations:

$$\begin{aligned} \epsilon_0 \nabla \cdot \mathbf{E} &= \rho & \nabla \cdot \mathbf{B} &= 0 \\ \nabla \times \mathbf{E} &= -\frac{\partial \mathbf{B}}{\partial t} & \nabla \times \mathbf{B} &= \mu_0 \mathbf{J} + \epsilon_0 \mu_0 \frac{\partial \mathbf{E}}{\partial t} \end{aligned}$$

Do we really need to know ρ and ${\bf J}$ exactly? don't care about phenomena at atomic scale

On macroscopic scale, charge, current \rightarrow 0 Is there any macroscopic effect?

Yes, can have macroscopic dipole moment:



Electrons move in applied E:

displace cloud by $\Delta {f r}$ gives atomic dipole moment ${f p}=q\Delta {f r}$ q= net charge displaced (Expect $|\Delta r|\ll 10^{-10}$ m, $|q|\sim$ electron charge e)

5

If density N (atoms/m³), then P = Np units $P = (Cm)/m^3 = C/m^2$

How does ${\bf P}$ come into Maxwell equations?

Must be related to ho and ${f J}$ try to see how

Suppose P(r), test volume V:

Find net charge enclosed $Q = - \iint \mathbf{P} \cdot d\mathbf{S}$

7

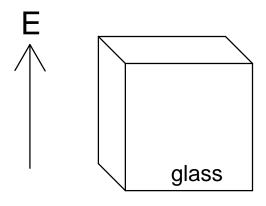
From Gauss's Theorem:

$$Q = -\iiint \nabla \cdot \mathbf{P} \, dV$$

But know $Q = \iiint \rho \, dV$

Conclude $\rho = -\nabla \cdot \mathbf{P}$

Question: If an electric field is applied to a glass cube as shown, what is the resulting charge distribution? Does it satisfy $\rho = -\nabla \cdot \mathbf{P}$?



What happens if ${\bf E}$ is oscillating?

9

Also, changing P(t) gives current J:

Charges q moving at velocity \mathbf{v} : net current density = $Nq\mathbf{v}$

So

$$\mathbf{J} = Nq\mathbf{v} = Nq\frac{d\mathbf{r}}{dt} = N\frac{d\mathbf{p}}{dt}$$

$$\mathbf{J} = \frac{d\mathbf{P}}{dt}$$

Example: An ionized gas has a density of 10^{10} molecules/m³ and carries an average charge of 10^{-20} C per molecule. The gas is flowing at a net speed of 100 m/s. How much charge passes through an area of 1 m² in a time of 1 s?

Solution:

Each 1 m 3 of gas has charge: 10^{10} molecules $\times 10^{-20}$ C/molecule = 10^{-10} C.

One hundred cubes pass through test area in 1 s, so net charge is 100×10^{-10} C = 10^{-8} C.

Or:

$$J = Nqv = (10^{10} \text{ m}^{-3})(10^{-20} \text{ C})(100 \text{ m/s}) = 10^{-8} \text{ A/m}^2$$

11

Put in P, Maxwell equations become

$$\begin{aligned} \epsilon_0 \nabla \cdot \mathbf{E} &= -\nabla \cdot \mathbf{P} & \nabla \cdot \mathbf{B} &= 0 \\ \nabla \times \mathbf{E} &= -\frac{\partial \mathbf{B}}{\partial t} & \nabla \times \mathbf{B} &= \mu_0 \frac{\partial \mathbf{P}}{\partial t} + \epsilon_0 \mu_0 \frac{\partial \mathbf{E}}{\partial t} \end{aligned}$$

Still need to specify ${\bf P}$ Expect $\Delta {\bf r} \propto {\bf E}$, therefore ${\bf P} \propto {\bf E}$

Write:
$$\mathbf{P} = \epsilon_0 \chi \mathbf{E}$$

with $\chi \equiv$ electric susceptability (dimensionless)

Non-linear optics:

$$P = \epsilon_0(\chi E + \chi^{(2)}E^2 + \chi^{(3)}E^3 + \dots)$$

non-linear function

If E is small, only linear term matters

Characteristic scale: electric field from nucleus

$$E \sim \frac{e}{4\pi\epsilon_0 r^2} \approx 10^{11} \text{ V/m}$$

Corresponds to $I \sim 10^{17} \ \text{W/m}^2$ We'll assume $I \ll \text{this}$

Want more? take Phys 532 next semester

13

We have $P = \epsilon_0 \chi E$

Consider wave in infinite, uniform medium Then χ constant in space

So
$$\epsilon_0 \nabla \cdot \mathbf{E} = -\nabla \cdot \mathbf{P}$$
 becomes $\nabla \cdot \mathbf{E} = -\chi \nabla \cdot \mathbf{E}$

Expect $\chi > 0$, must have $\nabla \cdot \mathbf{E} = 0$ same as vacuum!

But also
$$\nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \mu_0 \epsilon_0 \frac{\partial \mathbf{E}}{\partial t}$$

becomes
$$\nabla \times \mathbf{B} = \mu_0 \epsilon_0 (\chi + 1) \frac{\partial \mathbf{E}}{\partial t}$$

Define electric permittivity $\epsilon = \epsilon_0(\chi + 1)$

Then Maxwell equations become

$$\nabla \cdot \mathbf{E} = 0 \qquad \qquad \nabla \cdot \mathbf{B} = 0$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \qquad \nabla \times \mathbf{B} = \epsilon \mu_0 \frac{\partial \mathbf{E}}{\partial t}$$

Like vacuum, but $\epsilon_0 \rightarrow \epsilon$

15

Still have waves, but

speed
$$c \to \frac{1}{\sqrt{\epsilon\mu_0}} = \frac{c}{\sqrt{1+\chi}}$$

Define $\sqrt{1+\chi}=n$ index of refraction then v=c/n

Expect $\chi > 0$, so n > 1 and v < c

• Light is slower in medium than in vacuum

(Will see that's not always the case!)

Question: Since the electrons are displaced, and they have negative charge, shouldn't we normally expect $\chi < 0$?

Effect on plane waves:

Still need
$$k = \omega/v$$

So
$$k = n\omega/c \equiv nk_0$$

 k_0 = vacuum wave number

Wave number typically increases in medium

Wave vector $\mathbf{k} = n\mathbf{k}_0$

Have
$$\lambda = 2\pi/k = \lambda_0/n$$

 $\lambda_0 = \text{vacuum wavelength}$

Wave length typically decreases in medium

17

Irradiance also changed:

Still
$$S = \frac{1}{2\mu_0} E_0 \times B_0$$

Now
$$\mathbf{B}_0 = \frac{1}{v}\hat{\mathbf{k}} \times \mathbf{E}_0 = \frac{n}{c}\hat{\mathbf{k}} \times \mathbf{E}_0$$

So

$$\mathbf{S} = \frac{n}{2\mu_0 c} |\mathbf{E}_0|^2 \hat{\mathbf{k}} = \frac{n}{2\eta_0} |\mathbf{E}_0|^2 \hat{\mathbf{k}}$$

and

$$I = \frac{n}{2n_0} |\mathbf{E}_0|^2$$

Model for index (Hecht 3.5)

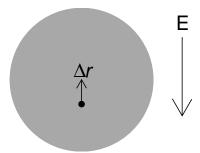
• Index of refraction is important

Could just measure for various materials, but can we relate it to a microscopic model of atom?

Quantitative accuracy: need quantum mechanics Get basic idea with classical approach

19

Remember our atom model:



Displaced cloud feels linear restoring force (for small displacements)

Total force
$$\mathbf{F}=q\mathbf{E}-\kappa\Delta\mathbf{r}=m\frac{d^2}{dt^2}\Delta\mathbf{r}$$

$$\kappa=\text{spring constant}$$

$$m=\text{mass}$$

Expect strong response (= large
$$n$$
) at $\omega \approx \omega_0 = \sqrt{\kappa/m}$

For simplicity, take ${\bf E}$ polarized along $\widehat{\bf x}$ so $\Delta {\bf r} \to x$

Differential equation

$$\ddot{x} + \omega_0^2 x = \frac{q}{m} E(t)$$

Simple harmonic oscillator infinite response at ω_0

21

Should also include damping force $\mathsf{Model} \ \ \mathsf{with} \ \mathbf{F}_{\mathsf{damp}} = -\beta \mathbf{v}$

Differential equation becomes

$$\ddot{x} + \sigma \dot{x} + \omega_0^2 x = -\frac{q}{m} E(t)$$

where $\sigma = \beta/m$

Damped harmonic oscillator

Solve for plane wave $E(t) = E_0 e^{-i\omega t}$ look for solution $x(t) = x_0 e^{-i\omega t}$

find
$$x_0 = \frac{1}{\omega_0^2 - i\omega\sigma - \omega^2} \frac{q}{m} E_0$$

or generally
$$\Delta \mathbf{r}(t) = \frac{1}{\omega_0^2 - i\omega\sigma - \omega^2} \frac{q}{m} \mathbf{E}(t)$$

Typical resonance response

23

Gives dipole moment $\mathbf{p}(t) = q\Delta \mathbf{r}(t)$ and macroscopic polarization $\mathbf{P}(t) = N\mathbf{p}(t)$:

$$P(t) = \frac{Nq^2}{m} \frac{1}{\omega_0^2 + i\omega\sigma - \omega^2} E(t)$$

By definition $P = \epsilon_0 \chi E$, so

$$\chi = \frac{Nq^2}{\epsilon_0 m} \frac{1}{\omega_0^2 + i\omega\sigma - \omega^2}$$

ullet Predicts macroscopic quantity χ in terms of microscopic quantities $q,\ m,\ \omega_0,\ \sigma$

Note, χ is complex for $\sigma \neq 0$.

Really just our complex representation

What does it mean?

 $n=\sqrt{1+\chi}$ is complex write \tilde{n} as reminder

So $\tilde{n}=n_R+in_I$ and $\mathbf{k}=\tilde{n}\mathbf{k}_0$

Plane wave:
$$\mathbf{E} = \mathbf{E}_0 e^{i[(n_R + in_I)\mathbf{k}_0 \cdot \mathbf{r} - \omega t]}$$

= $\mathbf{E}_0 e^{-n_I \mathbf{k}_0 \cdot \mathbf{r}} e^{i(n_R \mathbf{k}_0 \cdot \mathbf{r} - \omega t)}$

Really
$$\mathbf{E} = |E_0|\hat{\jmath}e^{-n_I\mathbf{k}_0\cdot\mathbf{r}}\cos\left(n_R\mathbf{k}_0\cdot\mathbf{r} - \omega t + \phi\right)$$

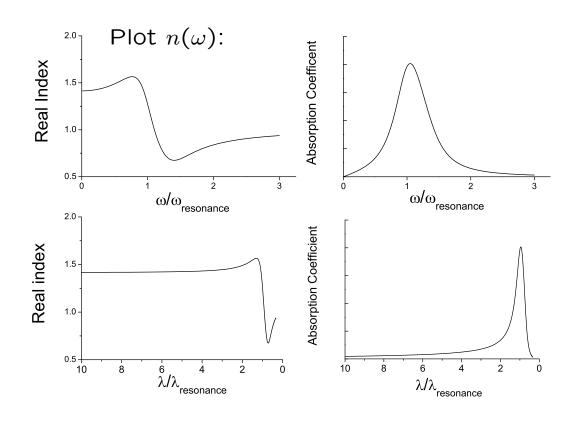
25

Amplitude decays as wave propagates models absorption (Comes from damping in atoms)

Usually write
$$\tilde{n} \rightarrow n + i \frac{\alpha}{2k_0}$$
 instead of $n_R + i n_I$

Say
$$\hat{\mathbf{k}} = \hat{\mathbf{z}}$$
. Then $\mathbf{E} = \mathbf{E}_0 e^{-\alpha z/2} e^{i(n\mathbf{k}_0 z - \omega t)}$ and irradiance is $I = \frac{n}{2\eta_0} |E_0|^2 e^{-\alpha z}$

So α is absorption coefficient (units m⁻¹) I reduced by 1/e in distance $1/\alpha$



Also see that n depends on ω : Resonance at $\omega = \omega_0$

On resonance: high absorption

bad for optics

Good materials: ω_0 lies in UV

• gives high-frequency cutoff for transmission

Below resonance n>1 and $dn/d\omega>1$ so v depends on ω - called dispersion More on this later

27

Quantum mechanics gives similar result:

$$\chi(\omega) = \frac{Ne^2}{\epsilon_0 m} \sum_{j} \frac{f_j}{\omega_j^2 - \omega^2 - i\omega\sigma_j}$$

Main difference:

Many resonant frequencies ω_j (correspond to energy transitions)

Good optical materials: no resonances in visible

Weighting factors f_j called oscillator strengths (related to transition probabilities)

29

Index calculation has strange implications:

Since $n = n(\omega)$, wave velocity $v = v(\omega)$

- No longer have true wave equation
- Non-plane waves distorted in medium

Predict possible to have n < 1: so v > c?

- ullet Meaning of v is tricky: still can't transmit info faster than c
- But pretty strange

Try to understand better next time

Summary

- Electric field polarizes medium, causes current flow
- \bullet EM waves in medium are similar to in vacuum, with v=c/n
- Medium response exhibits resonances:
 absorption peaks
- Glass, other good materials have no resonances in optical region

31