Last time, talked about light scattering: total field $=$ incident field + scattered field

Transmission through media:

- scattered field causes phase shift, looks like wave slows down

But individually, both waves travel at c

Today: Start considering what happens at boundary between two materials

Get Law of Reflection, Snell's Law
Generalize to Fermat's Principle

Outline:

- Optical materials
- Scattering and reflection
- Refraction
- Fermat's principle

Next time: finish studying boundaries with Fresnel relations

Optical Materials

Talked about index and absorption:
Said good materials have no resonances in visible
Be a little more specific
What material to use in given application?
References:

- Optics catalogs (Melles Griot, CVI, Oriel)
- Schott Glass catalog

Most common optical glass: Schott BK7
SiO_{2} with $\mathrm{B}_{2} \mathrm{O}_{5}, \mathrm{Na}_{2} \mathrm{O}, \mathrm{CaO}+$ others
Index $n \approx 1.5$
Transmission range 350-2000nm
Few bubbles or defects
Use for windows, lenses in visible, near-infrared

Resonance in UV:
electronic excitations
Resonance in IR:
molecular excitations
Impurities: several small resonances, $\lambda=1-2 \mu \mathrm{~m}$ don't see on graph important for lasers, optical fibers

Question: Why does absorption increase so much more slowly in IR than in UV?

Other useful materials:
Schott SF11 glass: transmits $400 \mathrm{~nm}-2 \mu \mathrm{~m}$

$$
n \approx 1.7
$$

Pyrex: good mirror substrate
Suprasil: transmits $150 \mathrm{~nm}-2 \mu \mathrm{~m}$
MgF_{2} : transmits $150 \mathrm{~nm}-6 \mu \mathrm{~m}$
used in coatings
CaF_{2} : transmits $150 \mathrm{~nm}-9 \mu \mathrm{~m}$
Sapphire: transmits $200 \mathrm{~nm}-6 \mu \mathrm{~m}$
ZeSe: transmits $700 \mathrm{~nm}-20 \mu \mathrm{~m}$
Many others

Reflection (Hecht 4.3)
Again, two approaches possible:

- Use Maxwell with $\epsilon_{0} \rightarrow \epsilon$
- Think about scattered fields

Today: take scattering approach
try to understand physics
Next time: use Maxwell, get complete answers

Start with light in piece of glass:

Why no reflection from say $z=0$?
Scattered waves from nearby atoms cancel out

Introduce gap at $z=0$:

Missing atoms: scattered waves don't cancel Remove material, reflected wave appears!

Expect wave from both surfaces
Fields should be equal and opposite: would cancel if surfaces brought together

Funny point:
Does reflection comes from atoms at surface?
No:
Reflection $=$ net wave from all atoms $z>0$ (Which atoms were missing ones cancelling?)

Question: If reflected light comes from all the atoms, shouldn't the reflected field change if you introduce a second surface downstream? How can that be?

In general, incident light at an angle:

Expect reflected wave where all scattered fields have same phase

Say plane waves from distant source α, detect at distance point β

Consider scattered field from atoms A and B

Need fields from A and B to have same phase Say distance from α to $\mathrm{A}=L$ distance from B to $\beta=L^{\prime}$

Incident field at $\mathrm{A}=E_{0} e^{i[k L-\omega t]}$
Incident field at $\mathrm{B}=E_{0} e^{i\left[k\left(L+d_{B}\right)-\omega t\right]}$
Scattered field from A at β

$$
A e^{i k L} e^{i\left[k\left(L^{\prime}+d_{A}\right)-\omega t\right]}
$$

Scattered field from B at β :

$$
A e^{i k\left(L+d_{B}\right)} e^{i\left[k L^{\prime}-\omega t\right]}
$$

Make phases equal: $L+L^{\prime}+d_{A}=L+L^{\prime}+d_{B}$ or $d_{A}=d_{b}$

angle of incidence θ_{i}
angle of reflection θ_{r}
Need $\theta_{i}=\theta_{r}$: Law of Reflection

Typically just draw k-vectors
$=$ "rays"
and don't think about all this scattering stuff

Just like balls bouncing off a wall

But good to know what's going on underneath

Sometimes, need 3D version of reflection law
Define $\widehat{\mathbf{u}}=$ normal to surface
Then $\widehat{\mathbf{k}}_{\text {refl }}$ in plane of $\widehat{\mathbf{k}}_{\text {inc }}$ and $\widehat{\mathbf{u}}$ Get

$$
\widehat{\mathbf{k}}_{\text {refl }}=\widehat{\mathbf{k}}_{\text {inc }}-2\left(\widehat{\mathbf{k}}_{\text {inc }} \cdot \widehat{\mathbf{u}}\right) \widehat{\mathbf{u}}
$$

Question: Should $\widehat{\mathbf{u}}$ be normal pointing out of or into the surface?

Refraction (Hecht 4.4)

Think about transmitted wave

Now have $\mathbf{E}_{\text {tot }}=\mathbf{E}_{\text {inc }}+\mathbf{E}_{\text {scat }}$
(For reflection, $\mathbf{E}_{\text {scat }}$ and $\mathbf{E}_{\text {inc }}$ more distinct)

But $\mathbf{E}_{\text {scat }}$ hard to calculate now:

- Scattered field is strong, gets rescattered
- Want field inside medium, close to charges

Be clever instead:
Incident medium: $n=n_{1}$
Total incident wave $=\mathbf{E}_{1} e^{i\left(n_{1} \mathbf{k}_{1} \cdot \mathbf{r}-\omega t\right)}$
Take $\mathbf{k}=k_{1 x} \widehat{\mathbf{x}}+k_{1 z} \widehat{\mathbf{z}}$
Transmitted medium: $n=n_{2}$
Total transmitted wave $=\mathbf{E}_{2} e^{i\left(n_{2} \mathbf{k}_{2} \cdot \mathbf{r}-\omega t\right)}$
Then $\mathbf{k}=k_{2 x} \widehat{\mathbf{x}}+k_{2 z} \hat{\mathbf{z}}$

At boundary $z=0$:
$\mathbf{E}_{\text {inc }}=\mathbf{E}_{1} e^{i\left(n_{1} k_{1 x} x-\omega t\right)} \quad \mathbf{E}_{\text {trans }}=\mathbf{E}_{2} e^{i\left(n_{2} k_{2 x} x-\omega t\right)}$

Don't need E continous across boundary, do need phase difference independent of x

- If boundary is uniform, how could fields be in phase at one point and out of phase at another?
- Same reason ω can't change

So need $n_{1} k_{1 x}=n_{2} k_{2 x}$

Geometry:

$k_{1 x}=k_{1} \sin \theta_{1}$
$k_{2 x}=k_{2} \sin \theta_{2}$

Here k_{1} and k_{2} are vacuum k 's: $k_{1}=k_{2}=\omega / c$
So if $n_{1} k_{1 x}=n_{2} k_{2 x}$
then $\frac{n_{1} \omega}{c} \sin \theta_{1}=\frac{n_{2}}{\omega} c \sin \theta_{2}$
or

$$
n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2} \quad \text { Snell's Law }
$$

Follows from:

- $\mathbf{k} \rightarrow n \mathbf{k}$ in medium
- symmetry of surface

Generalize to 3D:
Have $\mathbf{k}_{\text {inc }}, \mathbf{k}_{\text {trans }}$ and surface normal $\widehat{\mathbf{u}}$ in same plane

Write

$$
n_{1} \widehat{\mathbf{k}}_{1} \times \widehat{\mathbf{u}}=n_{2} \widehat{\mathbf{k}}_{2} \times \widehat{\mathbf{u}}
$$

or

$$
\mathrm{k}_{1} \times \widehat{\mathbf{u}}=\mathrm{k}_{2} \times \widehat{\mathbf{u}}
$$

Fermat's Principle (Hecht 4.5)
Can generalize previous results

Think about reflection again
Before:

- Where does detector need to be to see reflected light?

Now ask:

- Given source and detector positions, which points on surface contribute to detected light?

Which atoms on surface are radiating waves that interfere constructively at β ?

Hard to work out geometrically, since phase of $\mathrm{E}_{\text {inc }}$ is complicated
(Even worse if surface is curved!)

Consider point P on surface

Incident field at $P=E_{0} e^{i(k s-\omega t)}$
Field from P reaching β : $E_{0}^{\prime} e^{i\left[k\left(s+s^{\prime}\right)-\omega t\right]}$
Write $s+s^{\prime}=\mathcal{S} \equiv$ Optical Path Length

Net phase at β : $\quad \phi_{P}=k \mathcal{S}$
Get constructive interference from points near P if fields from nearby points have same phase

Or: if \mathcal{S} constant near P

If P labelled by coordinate x, want

$$
\frac{d \mathcal{S}}{d x}=0
$$

Work this out

$$
\begin{aligned}
& \text { Say } \mathbf{r}_{\alpha}=\left(x_{1}, z_{1}\right) \text { and } \mathbf{r}_{\beta}=\left(x_{2}, z_{2}\right) \text { and } \mathbf{r}_{P}=(x, 0) \\
& \text { (surface at } z=0 \text {, leave out } y \text { for now) }
\end{aligned}
$$

Then $\mathcal{S}=s+s^{\prime}$

$$
=\sqrt{\left(x-x_{1}\right)^{2}+z_{1}^{2}}+\sqrt{\left(x-x_{2}\right)^{2}+z_{2}^{2}}
$$

$$
\text { and } \begin{aligned}
\frac{d \mathcal{S}}{d x} & =\frac{x-x_{1}}{\sqrt{\left(x-x_{1}\right)^{2}+z_{1}^{2}}}+\frac{x-x_{2}}{\sqrt{\left(x-x_{2}\right)^{2}+z_{2}^{2}}} \\
& =0
\end{aligned}
$$

Solve for $x: \frac{\left(x-x_{1}\right)^{2}}{\left(x-x_{1}\right)^{2}+z_{1}^{2}}=\frac{\left(x-x_{2}\right)^{2}}{\left(x-x_{2}\right)^{2}+z_{2}^{2}}$
Invert: $1+\frac{z_{1}^{2}}{\left(x-x_{1}\right)^{2}}=1+\frac{z_{2}^{2}}{\left(x-x_{2}\right)^{2}}$
So $\frac{z_{1}}{x-x_{1}}= \pm \frac{z_{2}}{x-x_{2}}$
From original equation, need "-" root

Solve $x=\frac{x_{1} z_{2}+x_{2} z_{1}}{z_{1}+z_{2}}$

Relate to geometry:

Had

$$
\frac{x-x_{1}}{\sqrt{\left(x-x_{1}\right)^{2}+z_{1}^{2}}}=\frac{x_{2}-x}{\sqrt{\left(x-x_{2}\right)^{2}+z_{2}^{2}}}
$$

Means $\sin \theta_{i}=\sin \theta_{r}$
Again, $\theta_{i}=\theta_{r}$, law of reflection

Idea: light takes path such that \mathcal{S} is stationary \equiv constant for small variations in path
"Path" identifies atoms whose scattered fields add constructively

Called Fermat's Principle

Very powerful method

31

Apply to refraction

Phase from α to β
$=n_{1} k s+n_{2} k s^{\prime}$
Here define $\mathcal{S}=n_{1} s+n_{2} s^{\prime}$

Again need $d \mathcal{S} / d x=0$

Question: Why do we want $d \mathcal{S} / d x=0$ here?
$\mathcal{S}(x)=n_{1} \sqrt{\left(x-x_{1}\right)^{2}+z_{1}^{2}}+n_{2} \sqrt{\left(x-x_{2}\right)^{2}+z_{2}^{2}}$

$$
\frac{d \mathcal{S}}{d x}=\frac{n_{1}\left(x-x_{1}\right)}{s}+\frac{n_{2}\left(x-x_{2}\right)}{s^{\prime}}=0
$$

Again, gives
$n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}$

For arbitrary path, define

$$
\mathcal{S}=\int n(\mathbf{r}) d s \quad \text { (integrated along path) }
$$

Usually path $=$ sum of straight line segments then $\int \rightarrow \Sigma$

Fermat's Principle:
Light takes path such that \mathcal{S} is stationary
Small variations in path, \mathcal{S} doesn't change (could be min, max, or constant)

Question: What does Fermat's principle say about light travelling through free space?

To use:
If \mathcal{S} is function of parameters $\left\{x_{i}\right\}$, want

$$
\frac{\partial \mathcal{S}}{\partial x_{i}}=0 \quad \text { for all } i
$$

For physics students:
Can allow arbitrary path variations
write $\delta \mathcal{S}=0$, get differential equation for path
Just like mechanics

Note, haven't really proven Fermat's Principle:

- Works for reflection makes sense from scattering picture
- Works for refraction
scattering picture unclear
- Works in free space no scattering at all!

Also, ambiguous what "path" means for a wave

Revisit when we derive Huygens' Principle

Summary

For now, understand how light reflected, refracted can understand lenses, mirrors

- Law of reflection: $\theta_{i}=\theta_{r}$
- Snell's law: $n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}$
- Fermat's principle:
$\mathcal{S}=\int n d s$
light travels path with \mathcal{S} constant

