
Phys 531 Lecture 5 16 September 2004

Fermat’s Principle

Last time, talked about light scattering:

total field = incident field + scattered field

Transmission through media:

- scattered field causes phase shift,

looks like wave slows down

But individually, both waves travel at c
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Today: Start considering what happens at bound-

ary between two materials

Get Law of Reflection, Snell’s Law

Generalize to Fermat’s Principle

Outline:

• Optical materials

• Scattering and reflection

• Refraction

• Fermat’s principle

Next time: finish studying boundaries with Fresnel

relations
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Optical Materials

Talked about index and absorption:

Said good materials have no resonances in visible

Be a little more specific

What material to use in given application?

References:

- Optics catalogs (Melles Griot, CVI, Oriel)

- Schott Glass catalog
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Most common optical glass: Schott BK7

SiO2 with B2O5, Na2O, CaO + others

Index n ≈ 1.5

Transmission range 350 – 2000 nm

Few bubbles or defects

Use for windows, lenses in visible, near-infrared
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Resonance in UV:

electronic excitations

Resonance in IR:

molecular excitations

Impurities: several small resonances, λ = 1-2 µm

don’t see on graph

important for lasers, optical fibers

Question: Why does absorption increase so much more

slowly in IR than in UV?
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Other useful materials:

Schott SF11 glass: transmits 400 nm – 2 µm

n ≈ 1.7

Pyrex: good mirror substrate

Suprasil: transmits 150 nm – 2 µm

MgF2: transmits 150 nm – 6 µm

used in coatings

CaF2: transmits 150 nm – 9 µm

Sapphire: transmits 200 nm – 6 µm

ZeSe: transmits 700 nm – 20 µm

Many others
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Reflection (Hecht 4.3)

Again, two approaches possible:

• Use Maxwell with ε0 → ε

• Think about scattered fields

Today: take scattering approach

try to understand physics

Next time: use Maxwell, get complete answers
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Start with light in piece of glass:

z = 0

Why no reflection from say z = 0?

Scattered waves from nearby atoms cancel out

9

Introduce gap at z = 0:

z = 0

vacuum

Missing atoms: scattered waves don’t cancel

Remove material, reflected wave appears!
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Expect wave from both surfaces

Fields should be equal and opposite:

would cancel if surfaces brought together

Funny point:

Does reflection comes from atoms at surface?

No:

Reflection = net wave from all atoms z > 0

(Which atoms were missing ones cancelling?)

Question: If reflected light comes from all the atoms, shouldn’t

the reflected field change if you introduce a second surface

downstream? How can that be?
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In general, incident light at an angle:

Expect reflected wave where all scattered fields

have same phase
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Say plane waves from distant source α,

detect at distance point β

Consider scattered field from atoms A and B

to α
to β  

A B

dA Bd
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Need fields from A and B to have same phase

Say distance from α to A = L

distance from B to β = L′

Incident field at A = E0ei[kL−ωt]

Incident field at B = E0ei[k(L+dB)−ωt]

Scattered field from A at β

AeikLei[k(L′+dA)−ωt]

Scattered field from B at β:

Aeik(L+dB)ei[kL′−ωt]
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Make phases equal: L + L′ + dA = L + L′ + dB

or dA = db

A B

dA Bdθi θr

angle of incidence θi

angle of reflection θr

Need θi = θr : Law of Reflection
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Typically just draw k-vectors

= “rays”

and don’t think about all this scattering stuff

θi
θr

Just like balls bouncing off a wall

But good to know what’s going on underneath
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Sometimes, need 3D version of reflection law

Define û = normal to surface

Then k̂refl in plane of k̂inc and û

Get

k̂refl = k̂inc − 2(k̂inc · û)û

Question: Should û be normal pointing out of or into the

surface?
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Refraction (Hecht 4.4)

Think about transmitted wave

Now have Etot = Einc + Escat

(For reflection, Escat and Einc more distinct)
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But Escat hard to calculate now:

• Scattered field is strong, gets rescattered

• Want field inside medium, close to

charges

Be clever instead:

Incident medium: n = n1

Total incident wave = E1ei(n1k1·r−ωt)

Take k = k1xx̂ + k1zẑ

Transmitted medium: n = n2

Total transmitted wave = E2ei(n2k2·r−ωt)

Then k = k2xx̂ + k2zẑ
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At boundary z = 0:

Einc = E1ei(n1k1xx−ωt) Etrans = E2ei(n2k2xx−ωt)

Don’t need E continous across boundary,

do need phase difference independent of x

• If boundary is uniform, how could fields

be in phase at one point and out of phase

at another?

• Same reason ω can’t change

So need n1k1x = n2k2x
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Geometry:

θ

θ

n

n

k

k

1
1
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2

2

2

x

z

k1x = k1 sin θ1
k2x = k2 sin θ2
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Here k1 and k2 are vacuum k’s: k1 = k2 = ω/c

So if n1k1x = n2k2x

then
n1ω

c
sin θ1 =

n2

ω
c sin θ2

or

n1 sin θ1 = n2 sin θ2 Snell’s Law

Follows from:

• k → nk in medium

• symmetry of surface
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Generalize to 3D:

Have kinc, ktrans and surface normal û

in same plane

Write

n1k̂1 × û = n2k̂2 × û

or

k1 × û = k2 × û
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Fermat’s Principle (Hecht 4.5)

Can generalize previous results

Think about reflection again

Before:

• Where does detector need to be to see

reflected light?

Now ask:

• Given source and detector positions,

which points on surface contribute to de-

tected light?
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α
β

Which atoms on surface are radiating waves that

interfere constructively at β?

Hard to work out geometrically, since phase of Einc

is complicated

(Even worse if surface is curved!)
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Consider point P on surface

α β

P

s s’

x

z

Incident field at P = E0ei(ks−ωt)

Field from P reaching β: E′
0ei[k(s+s′)−ωt]

Write s + s′ = S ≡ Optical Path Length
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Net phase at β : φP = kS

Get constructive interference from points near P

if fields from nearby points have same phase

Or: if S constant near P

If P labelled by coordinate x, want

dS

dx
= 0
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Work this out

Say rα = (x1, z1) and rβ = (x2, z2) and rP = (x,0)

(surface at z = 0, leave out y for now)

Then S = s + s′

=
√

(x − x1)
2 + z2

1 +
√

(x − x2)
2 + z2

2

and
dS

dx
=

x − x1
√

(x − x1)
2 + z2

1

+
x − x2

√

(x − x2)
2 + z2

2

= 0
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Solve for x:
(x − x1)

2

(x − x1)
2 + z2

1

=
(x − x2)

2

(x − x2)
2 + z2

2

Invert: 1 +
z2
1

(x − x1)
2

= 1 +
z2
2

(x − x2)
2

So
z1

x − x1
= ±

z2
x − x2

From original equation, need “–” root

Solve x =
x1z2 + x2z1

z1 + z2
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Relate to geometry:

x

z

(x, 0)

(x , y )11
(x , y )  22

θi θr

Had

x − x1
√

(x − x1)
2 + z2

1

=
x2 − x

√

(x − x2)
2 + z2

2

Means sin θi = sin θr

Again, θi = θr, law of reflection
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Idea: light takes path such that S is stationary

≡ constant for small variations in path

“Path” identifies atoms whose scattered fields add

constructively

Called Fermat’s Principle

Very powerful method
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Apply to refraction

α

β

P

s

s’

x

z

n

n

1

2

Phase from α to β

= n1ks + n2ks′

Here define S = n1s + n2s′

Again need dS/dx = 0

Question: Why do we want dS/dx = 0 here?
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S(x) = n1

√

(x − x1)
2 + z2

1 + n2

√

(x − x2)
2 + z2

2

dS

dx
=

n1(x − x1)

s
+

n2(x − x2)

s′
= 0

α

β

s

s’

x

z

n

n

1

2

(x -x)1

(x-x )2

θ1

θ2

Again, gives

n1 sin θ1 = n2 sin θ2
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For arbitrary path, define

S =

∫

n(r)ds (integrated along path)

Usually path = sum of straight line segments

then
∫

→
∑

Fermat’s Principle:

Light takes path such that S is stationary

Small variations in path, S doesn’t change

(could be min, max, or constant)

Question: What does Fermat’s principle say about light

travelling through free space?
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To use:

If S is function of parameters {xi}, want

∂S

∂xi
= 0 for all i

For physics students:

Can allow arbitrary path variations

write δS = 0,

get differential equation for path

Just like mechanics
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Note, haven’t really proven Fermat’s Principle:

• Works for reflection

makes sense from scattering picture

• Works for refraction

scattering picture unclear

• Works in free space

no scattering at all!

Also, ambiguous what “path” means for a wave

Revisit when we derive Huygens’ Principle
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Summary

For now, understand how light reflected, refracted

can understand lenses, mirrors

• Law of reflection: θi = θr

• Snell’s law: n1 sin θ1 = n2 sin θ2

• Fermat’s principle:

S =
∫

n ds

light travels path with S constant
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