Phys 531 Lecture 6 21 September 2004 **Fresnel Relations**

Last time, starting looking at how light propagates across boundaries.

Scattering idea \rightarrow law of reflection, Snell's law Generalize to Fermat's principle

Important question: How much light will be reflected vs transmitted? Answer today using Maxwell equations

1

Outline:

- \bullet Boundary conditions for ${\bf E}$ and ${\bf B}$
- Fresnel equations
- Brewster's angle
- Reflectance and transmittance

Everything today from Hecht 4.6

Next time: when the Fresnel equations become complex

Boundary Conditions

Maxwell equations in medium:

$$\epsilon_0 \nabla \cdot \mathbf{E} = -\nabla \cdot \mathbf{P} \qquad \nabla \cdot \mathbf{B} = 0$$

$$\nabla \times \mathbf{B} = \mu_0 \frac{\partial \mathbf{P}}{\partial t} + \epsilon_0 \mu_0 \frac{\partial \mathbf{E}}{\partial t} \qquad \nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$\mathbf{P} = \text{macroscopic polarization} = \epsilon_0 \chi \mathbf{E}$$
Now consider $\chi = \chi(\mathbf{r})$
Rewrite:
$$\epsilon_0 \nabla \cdot [(1 + \chi)\mathbf{E}] = 0 \qquad \nabla \cdot \mathbf{B} = 0$$

$$\nabla \times \mathbf{B} = \epsilon_0 \mu_0 \frac{\partial}{\partial t} \left[(1 + \chi) \mathbf{E} \right] \qquad \nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

Recall $\epsilon_0(1 + \chi) \equiv \epsilon$, electric permittivity

Convenient to define $\mathbf{D}=\epsilon\mathbf{E}$

"Electric displacement" (units C/m^2)

Then have

$$\nabla \cdot \mathbf{D} = 0 \qquad \nabla \cdot \mathbf{B} = 0$$
$$\nabla \times \mathbf{B} = \mu_0 \frac{\partial \mathbf{D}}{\partial t} \qquad \nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

"Hides" charges of medium, even when crossing boundaries

Works for conductors too, if $\epsilon \rightarrow$ complex

Know how wave propagates in uniform medium

Don't know how to relate \mathbf{D} , \mathbf{E} and \mathbf{B} on opposite sides of boundary

Easiest to go back to integral form:

If
$$\nabla \cdot \mathbf{D} = 0$$
, then $\oint \mathbf{D} \cdot \mathbf{dS} = 0$

See what this says about boundary

5

Make little pillbox surface on boundary: area A small but nonzero height $h \rightarrow 0$

Then $\oiint \mathbf{D} \cdot \mathbf{dS} \to A(D_{1\perp} - D_{2\perp}) = 0$ where $D_{\perp} = \text{compenent of } \mathbf{D} \text{ normal to boundary}$

So D_{\perp} is continuous across boundary

Also have

$$\oint \mathbf{E} \cdot \mathbf{dl} = -\iint \frac{\partial \mathbf{B}}{\partial t}$$

Make little loop normal to boundary length L small

Then $\oint \mathbf{E} \cdot d\mathbf{l} \rightarrow L(E_{1\parallel} - E_{2\parallel})$ $E_{\parallel} = \text{component of } \mathbf{E} \text{ parallel to boundary}$ And

$$\iint \frac{\partial \mathbf{B}}{\partial t} \to \frac{Lh}{2} \left(\frac{\partial B_{1\parallel}}{\partial t} + \frac{\partial B_{2\parallel}}{\partial t} \right)$$
$$= 0 \quad \text{for } h \to 0$$

So \mathbf{E}_{\parallel} is continuous across boundary

⁷

Similarly, from

 $\oint \mathbf{B} \cdot \mathbf{dS} = 0 \text{ and } \oint \mathbf{B} \cdot \mathbf{dI} = \mu_0 \iint \frac{\partial \mathbf{D}}{\partial t}$ show that B_{\perp} and B_{\parallel} are continous So **B** is same on either side of boundary

Note: only true for nonmagnetic materials (normal in optics) Hecht gives general formulas

9

Apply continuity conditions to boundary $n_i \rightarrow n_t$ Three fields:

Incident
$$\mathbf{E}_i = \mathbf{E}_{i0}e^{i(\mathbf{k}_i \cdot \mathbf{r} - \omega t)}$$

Reflected $\mathbf{E}_r = \mathbf{E}_{r0} e^{i(\mathbf{k}_r \cdot \mathbf{r} - \omega t)}$

Transmitted $\mathbf{E}_t = \mathbf{E}_{t0} e^{i(\mathbf{k}_t \cdot \mathbf{r} - \omega t)}$

Here $\mathbf{k}_i = n_i \frac{\omega}{c} \hat{\mathbf{k}}_i$ etc. Also have $\mathbf{B} = \frac{n}{c} \hat{\mathbf{k}} \times \mathbf{E}$ for each

Want to determine \mathbf{E}_r and \mathbf{E}_t if given \mathbf{E}_i

Question: Wait, where did those n^2 's come from?

11

 E_x equation says

$$E_{i0x}e^{i(k_{ix}x-\omega t)} + E_{r0x}e^{i(k_{rx}x-\omega t)} = E_{t0x}e^{i(k_{tx}x-\omega t)}$$

for all x

Only possible if $k_{ix} = k_{rx} = k_{tx}$

Implies $\sin \theta_i = \sin \theta_r$ and $n_i \sin \theta_i = n_t \sin \theta_t$

• Gives law of reflection, Snell's law

So x dependence drops out, leaves equations for amplitudes \mathbf{E}_0 , \mathbf{B}_0

example: $E_{i0x} + E_{r0x} = E_{t0x}$

Easiest to separate two cases:

Case I: $E_{i0x} = 0$ Then all E_x components = 0 So E_0 's are \perp to plane of incidence Called "s-polarized" or "TE-polarized" case

Case II: $E_{i0y} = 0$ Then all E_y components = 0 So E_0 's are in plane of incidence Called "p-polarized" or "TM-polarized" case

Can write general wave as superposition of these

13

Have $B_{i0x} + B_{r0x} = B_{t0x}$, and

$$B_{i0x} = \frac{n_i}{c} E_{i0} \text{ etc.}$$

SO

$$-n_i E_{i0} \cos \theta_i + n_i E_{r0} \cos \theta_i = -n_t E_{t0} \cos \theta_t$$

Two equations, two unknowns E_{r0} and E_{t0} (B_z equation is redundant)

15

Solve:

$$(E_{i0} - E_{r0})n_i \cos \theta_i = E_{t0}n_t \cos \theta_t$$
$$= (E_{i0} + E_{r0})n_t \cos \theta_t$$

 $E_{i0}(n_i \cos \theta_i - n_t \cos \theta_t) = E_{r0}(n_i \cos \theta_i + n_t \cos \theta_t)$

Write $E_{r0} = r_{\perp} E_{i0}$ for

$$r_{\perp} = \frac{n_i \cos \theta_i - n_t \cos \theta_t}{n_i \cos \theta_i + n_t \cos \theta_t}$$

 r_{\perp} = amplitude reflection coefficient (for TE polarization) Then get E_{t0} :

$$(E_{i0} - E_{r0})n_i \cos \theta_i = E_{t0}n_t \cos \theta_t$$
$$E_{t0} = \frac{n_i \cos \theta_i}{n_t \cos \theta_t} (1 - r_\perp) E_{i0}$$

Define
$$E_{t0} = t_{\perp} E_{i0}$$

 $t_{\perp} = \frac{n_i \cos \theta_i}{n_t \cos \theta_t} (1 - r_{\perp})$
 $= \frac{n_i \cos \theta_i}{n_t \cos \theta_t} \frac{2n_t \cos \theta_t}{n_i \cos \theta_i + n_t \cos \theta_t}$

1	7
т	1

So
$$t_{\perp} = \frac{2n_i \cos \theta_i}{n_i \cos \theta_i + n_t \cos \theta_t}$$

amplitude transmssion coefficient (s-polarization)

This solves case I

Question: What happens to r_{\perp} and t_{\perp} if $n_i = n_t$?

Solve, get
$$E_{r0} = r_{\parallel} E_{i0}$$
, $E_{t0} = t_{\parallel} E_{i0}$

$$r_{\parallel} = \frac{n_t \cos \theta_i - n_i \cos \theta_t}{n_i \cos \theta_t + n_t \cos \theta_i}$$
$$t_{\parallel} = \frac{2n_i \cos \theta_t}{n_i \cos \theta_t + n_t \cos \theta_i}$$

Call r's, t's Fresnel coefficients, equations are Fresnel relations

20

Note: signs depend on picture set up

Gives opposite sign for r's Hecht's set up most common

Question: At normal incidence $r_{\perp} = -r_{\parallel}$. How are the actual directions of E_{inc} and E_{ref} related?

21

For now consider $n_i < n_t$: "external incidence" Plot for air $(n_i = 1) \rightarrow \text{glass}$ $(n_t = 1.5)$

Need to use Snell's Law to get θ_t

$$\cos \theta_t = \sqrt{1 - \sin^2 \theta_t}$$
$$= \sqrt{1 - \frac{n_i^2}{n_t^2} \sin^2 \theta_i}$$

Question: Do we need to worry about \pm with square root?

Features:

• $r_{\perp} = -r_{\parallel}$ at $\theta_i = 0$

No physical difference between TE and TM Picture difference gives minus sign

• $r \rightarrow 1$ as $\theta_i \rightarrow 90^\circ$ Everything reflects at glancing incidence

• $r_{\parallel} \rightarrow 0$ at $\theta_i = \theta_p$ Usually called Brewster's angle Hecht calls "polarization angle"

Demo!

Brewster's angle important for lasers best way to minimize reflections

Solve $r_{\parallel} = 0$: $n_t \cos \theta_p = n_i \cos \theta_t$

Get $\sin \theta_p = \frac{n_t}{\sqrt{n_i^2 + n_t^2}}$

Get some insight:

See $\tan \theta_p = n_t/n_i$ So $n_i \sin \theta_p = n_t \cos \theta_p$ But $n_t \cos \theta_p = n_i \cos \theta_t$ so $\sin \theta_p = \cos \theta_t \Rightarrow \theta_p + \theta_t = 90^\circ$

n_t

Picture:

Atoms in transmitted medium oscillate along E_t Dipole radiation $\rightarrow 0$ in direction of oscillation Brewster's angle:

when direction of oscillation = \hat{k}_{reflect}

For air \rightarrow glass, $\theta_p = 56.3^{\circ}$

Note, r and t are amplitude coefficients:

give E-fields

Usually more interested in transmitted and reflected power ${\cal P}$

Define reflectance
$$R = P_{ref}/P_{inc}$$

transmittance $T = P_{trans}/P_{inc}$

Get P from Poynting vector S:

Plane waves:
$$\mathbf{S} = \frac{n}{2\eta_0} |E_0|^2 \hat{\mathbf{k}}$$

Power through area
$$dA = \mathbf{S} \cdot \hat{\mathbf{u}} \, dA$$

 $\hat{\mathbf{u}} = \text{normal to surface}$
here $\hat{\mathbf{k}} \cdot \hat{\mathbf{u}} = \cos \theta$
So $P_{\text{inc}} = \frac{n_i}{2\eta_0} |E_{i0}|^2 \cos \theta_i \, dA$
 $P_{\text{refl}} = \frac{n_i}{2\eta_0} |E_{j0}|^2 \cos \theta_i \, dA$
 $P_{\text{trans}} = \frac{n_t}{2\eta_0} |E_{t0}|^2 \cos \theta_t \, dA$

Then

$$R = \frac{P_{\text{ref}}}{P_{\text{inc}}} = \frac{|E_{r0}|^2}{|E_{i0}|^2} = |r|^2$$

and

$$T = \frac{P_{\text{trans}}}{P_{\text{inc}}} = \frac{n_t \cos \theta_t |E_{t0}|^2}{n_i \cos \theta_i |E_{i0}|^2} = \frac{n_t \cos \theta_t}{n_i \cos \theta_i} |t|^2$$

Extra factors in T make sense:

- *n* accounts for difference in speed
- $\cos\theta$ accounts for difference in area

Can show R + T = 1 for both \perp and \parallel cases

• Energy conserved (if *n* is real)

29

Summary:

- Maxwell equations give continuity relations
- Fresnel coefficients r, t relate E_{inc} , E_{ref} , E_{trans}
- Two cases \perp (= TE = s) and \parallel (= TM = p) are different
- TM case exhibits Brewster's angle, $r(\theta_p) = 0$
- Fresnel coeffs related to power reflectance R, transmittance T
- Air-glass boundary reflects 4% at $\theta_i = 0$

³¹