Phys 531 Lecture 7 23 September 2004

Total Internal Reflection & Metal Mirrors

Last time, derived Fresnel relations

Give amplitude of reflected, transmitted waves at boundary

Focused on simple boundaries: $air \rightarrow glass$

1

Today, consider more complicated situations

- Total internal reflection
 - Evanescant waves
- Materials with complex index

This will wrap up unit on fundamental theory

Next time: ray optics

Total Internal Reflection (Hecht 4.7)

So far, considered $n_i < n_t$

If $n_i > n_t$, problem with Snell's Law:

$$\sin \theta_t = \frac{n_i}{n_t} \sin \theta_i$$

What if $(n_i/n_t) \sin \theta_i > 1$?

For instance, glass $(n_i = 1.5) \rightarrow \text{air } (n_t = 1)$:

if
$$\theta_i > 41.8^\circ$$
, then $\sin \theta_i > \frac{1}{1.5}$

Demo!

3

For $\sin \theta_i > \sin \theta_c \equiv n_t/n_i$, all light is reflected

Called total internal reflection = TIR only occurs when light exits medium (high $n \rightarrow low n$)

Would like to understand from Fresnel relations

$$r_{\perp} = \frac{n_i \cos \theta_i - n_t \cos \theta_t}{n_i \cos \theta_i + n_t \cos \theta_t}$$

$$r_{\parallel} = \frac{n_t \cos \theta_i - n_i \cos \theta_t}{n_i \cos \theta_t + n_t \cos \theta_i}$$

How can we use? Don't have a θ_t !

Trick: use complex θ_t

Say $\theta_t = a + ib$

Considered $\cos \theta_t$ in homework 1 Look at $\sin \theta_t$ now

Use

$$\sin(a+ib) = \sin(a)\cos(ib) + \cos(a)\sin(ib)$$

Just need sin(ib), cos(ib)

5

Euler identity gives:
$$\sin(x) = \frac{1}{2i} \left(e^{ix} - e^{-ix} \right)$$

 $\cos(x) = \frac{1}{2} \left(e^{ix} - e^{-ix} \right)$

So
$$\sin(ib) = \frac{1}{2i} \left(e^{i(ib)} - e^{-i(ib)} \right)$$
$$= -\frac{i}{2} \left(e^{-b} - e^{b} \right)$$

Hyperbolic sine:
$$\sinh(x) \equiv \frac{1}{2} \left(e^x - e^{-x} \right)$$

So $\sin(ib) = i \sinh(b)$

Hyperbolic sine and cosine:

7

Also

$$\cos(ib) = \frac{1}{2} \left(e^{i(ib)} + e^{-i(ib)} \right)$$
$$= \frac{1}{2} \left(e^{-b} + e^{b} \right)$$
$$\equiv \cosh(b)$$

Hyperbolic cosine

So: sin(a + ib) = sin(a) cosh(b) + i cos(a) sinh(b)

For large $b, \, \sinh b, \cosh b \to e^b$ no problem satisfying $n_i \sin \theta_i = n_t \sin \theta_t$

Want $n_i \sin \theta_i = n_t \sin \theta_t$ with complex θ_t

Assume $n_i \sin \theta_i$ and n_t real:

Then Im $[n_t \sin \theta_t] = n_t \cos(a) \sinh(b) = 0$

Don't want b=0, so take $a=\frac{\pi}{2}$

Gives $\sin \theta_t = \cosh b$

Snell's law becomes

$$n_i \sin \theta_i = n_t \cosh b$$

Note $\cosh b > 1$, require $\sin \theta_i > n_t/n_i - \sin \theta_c$

9

Example: What is the complex transmission angle for light propagating from glass to air with an angle of incidence of 60°?

If $\theta_i = 60^{\circ}$ then $b = \cosh^{-1}[1.5\sin(60^{\circ})] = 0.755$

So
$$\theta_t = \frac{\pi}{2} + 0.755i$$

Just need a good calculator!

Question: What are the units of b?

What happens to Fresnel coefficients?

Need
$$\cos \theta_t = \cos \left(\frac{\pi}{2} + ib \right)$$

= $-i \sinh(b)$

pure imaginary

So
$$r_{\perp} = \frac{n_i \cos \theta_i - n_t \cos \theta_t}{n_i \cos \theta_i + n_t \cos \theta_t}$$

$$\rightarrow \frac{n_i \cos \theta_i - i n_t \sinh b}{n_i \cos \theta_i + i n_t \sinh b} \quad \text{complex!}$$

11

Still have $E_{r0}=rE_{i0}$ complex r: phase shift between ${f E}_{\rm inc}$ and ${f E}_{\rm refl}$ Both r_{\perp} and r_{\parallel} have form

$$\begin{split} r &= \frac{u+iv}{u-iv} \\ r_{\perp} : u &= n_i \cos \theta_i \text{ and } v = n_t \sinh b \\ r_{\parallel} : u &= n_t \cos \theta_i \text{ and } v = n_i \sinh b \end{split}$$

If z = u + iv, then $r = z/z^*$

So
$$|r| = \frac{|z|}{|z^*|} = 1$$
: all light reflected

Write $z=|z|e^{i\phi}$, then $r=e^{2i\phi}$

Reflection phase shift: $2\phi = 2 \tan^{-1} \left(\frac{v}{u}\right)$

To calculate numerically, just use good calculator (or computer program):

Evaluate

$$r_{\perp} = \frac{n_i \cos \theta_i - n_t \cos \theta_t}{n_i \cos \theta_i + n_t \cos \theta_t}$$

for
$$\theta_t = \sin^{-1}\left(\frac{n_i}{n_t}\sin\theta_i\right)$$

Let computer deal with complex math

13

Plot for glass \rightarrow air:

Use TIR to make good mirror be aware of phase shifts

For TIR,
$$R = |r|^2 = 1$$
 so all power reflected

But also have

$$t_{\perp} = \frac{2n_i \cos \theta_i}{n_i \cos \theta_i + n_t \cos \theta_t}$$

$$t_{\parallel} = \frac{2n_i \cos \theta_t}{n_i \cos \theta_t + n_t \cos \theta_i}$$

do not equal zero!?

Have a transmitted field $(t \neq 0)$ but doesn't carry any energy (R = 1)

Question: How might this contradiction be resolved?

15

To see:

Transmitted wave: $\mathbf{E}_t = \mathbf{E}_{t0}e^{i(\mathbf{k}_t \cdot \mathbf{r} - \omega t)}$

with $\mathbf{k}_t = |k_t|(\sin\theta_t \hat{\mathbf{x}} + \cos\theta_t \hat{\mathbf{z}})$

For TIR,
$$\theta_t = \frac{\pi}{2} + b$$
 $\sin \theta_t \rightarrow \cosh b$ $\cos \theta_t \rightarrow i \sinh b$

So $\mathbf{k}_t \to k_t (\cosh b \hat{\mathbf{x}} + i \sinh b \hat{\mathbf{z}})$

Transmitted field

$$\mathbf{E}_t \to \mathbf{E}_{t0} e^{i[k_t(x\cosh b + iz\sinh b) - \omega t]}$$
$$= \mathbf{E}_{t0} e^{-k_t z \sinh b} e^{i(k_t x \cosh b - \omega t)}$$

Wave propagates in x direction Decays exponentially in z direction

• Carries no energy away from surface

Called evanenscent wave

(Not same as exponential decay from absorption!)

17

Evanescent wave can be observed

Single surface:

Introduce

second surface:

Transmitted wave appears!

Get transmission from tail of evanescent wave

For gap d, amplitude of transmitted wave $\approx e^{-k_t d \sinh b}$

ullet reflection o 0 smoothly as d o 0

Called frustrated total internal reflection

Completely analogous to tunneling in QM

19

Still hope T = 0 for plain TIR

Should have defined
$$T = \operatorname{Re} \left[\frac{n_t \cos \theta_t}{n_i \cos \theta_i} \right] |t|^2$$

In TIR,
$$\cos \theta_t = -i \sinh b$$

real part = 0

So T = 0, as needed

Raises question: what if n_i or n_t is complex?

Reflection from metals (Hecht 4.8)

Saw previously that in absorbing medium

$$n \to n + i \frac{\alpha}{2k_0}$$

 α = absorption coefficient

Get
$$\mathbf{E} = \mathbf{E}_0 e^{i(n\mathbf{k}_0 \cdot \mathbf{r} - \omega t)}$$

 $\rightarrow \mathbf{E}_0 e^{-\alpha \hat{\mathbf{k}} \cdot \mathbf{r}/2} e^{i(n\mathbf{k} \cdot \mathbf{r} - \omega t)}$

and
$$I \propto |E_0|^2 \propto e^{-\alpha \hat{\mathbf{k}} \cdot \mathbf{r}}$$

Wave attenuates as it propagates

21

Question: How could you distinguish an evanescent wave from TIR and a plane wave exponentially decaying due to absorption? (Supposing no knowledge about the media.)

Normally don't want optical material to absorb

Important exception: mirrors light doesn't penetrate medium not much loss

How to apply Fresnel relations? Typically n_i , θ_i real n_t complex

Same equations apply

- Snell's law: $\sin \theta_t = \frac{n_i}{n_t} \sin \theta_i$ (so θ_t complex)
- Use $\cos \theta_t = \sqrt{1 \sin^2 \theta_t}$ as before
- \bullet Plug into equations for r_{\perp} , r_{\parallel} Get complex result

Hard to do by hand; easy on computer

23

Consider a very good absorber $\alpha \to \infty$

Then
$$n_i \sin \theta_i = \left(n_t + i \frac{\alpha}{2k_0}\right) \sin \theta_t$$
 means $\theta_t \to 0$ and $r_\perp = \frac{n_i \cos \theta_i - n_t \cos \theta_t}{n_i \cos \theta_i + n_t \cos \theta_t}$
$$\to \frac{n_i \cos \theta_i - n_t - i \alpha/2k_0}{n_i \cos \theta_i + n_t + i \alpha/2k_0}$$

$$\to -1$$

Similarly $r_{\parallel}
ightarrow 1$

So perfect absorber = perfect reflector

To make a true absorber: need moderate α + porous surface reflected waves bounce many times Example: soot (= carbon dust)

Use high- α material for mirror

25

Highest α : metals

Homework problem 5 from assignment 1: In conductive medium get current ${\bf J}=\sigma {\bf E}$ $\sigma=$ conductivity

$$Got k = \sqrt{\epsilon \mu_0 \omega^2 + i\omega \mu_0 \sigma}$$

Rewrite

$$k = k_0 \sqrt{\frac{\epsilon}{\epsilon_0} + i \frac{\sigma}{\epsilon_0 \omega}}$$

Good conductor: silver $\sigma \approx 6 \times 10^7 \; (\Omega \; \text{m})^{-1} \; \; (\text{at dc})$

If
$$\lambda = 500$$
 nm and $\epsilon \approx \epsilon_0$
$$\frac{\sigma}{\epsilon_0 \omega} \approx 2000$$

So
$$k \approx k_0 \sqrt{2000i}$$

 $\approx 45k_0 \frac{1+i}{\sqrt{2}} = 30k_0(1+i)$

Then expect $n \approx \alpha/2k_0 \approx 30$

Actually, not that good at optical freqs find n=0.3 and $\alpha/2k_0=4$ Still get $R\approx 0.95$ across visible

27

Practical notes

• Typical metals:

Silver: $R \approx 0.95$ in visible, NIR

- oxidizes quickly in air

Gold: $R \approx 0.95$ in NIR

- doesn't oxidize

Aluminum: $R \approx 0.85$ in visible, NIR

- oxidizes but easy to protect (SiO)
- ullet Metals don't have Brewster angle typically dip in $R_{||}$, but not to zero
- ullet Wave penetrates fraction of λ typical 50-100 nm

Get better mirrors using dielectric layers

- discuss theory later
- can get R = 0.99 easily, 0.99999 with effort
- more expensive than metal

Could use TIR:

Drawbacks:

- Reflection losses from first surface
- Beam displacement inconvenient
- Limited range of θ_i

Usually use when displacement desired

29

Summary

- ullet Get TIR with internal incidence, $heta_i > heta_c$
- Perfect reflection, with phase shift
- Evanescant wave at surface
- For TIR or absorbing media,
 Fresnel equations are complex
- Highly absorbing medium → good mirror