Phys $531 \quad$ Lecture 73 September 2004
Total Internal Reflection \& Metal Mirrors
Last time, derived Fresnel relations
Give amplitude of reflected, transmitted waves at boundary

Focused on simple boundaries: air $\rightarrow$ glass

Today, consider more complicated situations

- Total internal reflection
- Evanescant waves
- Materials with complex index

This will wrap up unit on fundamental theory

Next time: ray optics

## Total Internal Reflection (Hecht 4.7)

So far, considered $n_{i}<n_{t}$
If $n_{i}>n_{t}$, problem with Snell's Law:

$$
\sin \theta_{t}=\frac{n_{i}}{n_{t}} \sin \theta_{i}
$$

What if $\left(n_{i} / n_{t}\right) \sin \theta_{i}>1$ ?

For instance, glass $\left(n_{i}=1.5\right) \rightarrow \operatorname{air}\left(n_{t}=1\right)$ :

$$
\text { if } \theta_{i}>41.8^{\circ}, \text { then } \sin \theta_{i}>\frac{1}{1.5}
$$

Demo!

For $\sin \theta_{i}>\sin \theta_{c} \equiv n_{t} / n_{i}$, all light is reflected
Called total internal reflection $=$ TIR only occurs when light exits medium (high $n \rightarrow$ low $n$ )

Would like to understand from Fresnel relations

$$
\begin{aligned}
r_{\perp} & =\frac{n_{i} \cos \theta_{i}-n_{t} \cos \theta_{t}}{n_{i} \cos \theta_{i}+n_{t} \cos \theta_{t}} \\
r_{\|} & =\frac{n_{t} \cos \theta_{i}-n_{i} \cos \theta_{t}}{n_{i} \cos \theta_{t}+n_{t} \cos \theta_{i}}
\end{aligned}
$$

How can we use? Don't have a $\theta_{t}$ !
Trick: use complex $\theta_{t}$

Say $\theta_{t}=a+i b$
Considered $\cos \theta_{t}$ in homework 1
Look at $\sin \theta_{t}$ now

Use

$$
\sin (a+i b)=\sin (a) \cos (i b)+\cos (a) \sin (i b)
$$

Just need $\sin (i b), \cos (i b)$

Euler identity gives: $\quad \sin (x)=\frac{1}{2 i}\left(e^{i x}-e^{-i x}\right)$

$$
\cos (x)=\frac{1}{2}\left(e^{i x}-e^{-i x}\right)
$$

So $\sin (i b)=\frac{1}{2 i}\left(e^{i(i b)}-e^{-i(i b)}\right)$

$$
=-\frac{i}{2}\left(e^{-b}-e^{b}\right)
$$

Hyperbolic sine: $\sinh (x) \equiv \frac{1}{2}\left(e^{x}-e^{-x}\right)$
So $\sin (i b)=i \sinh (b)$

Hyperbolic sine and cosine:



7

Also

$$
\begin{aligned}
\cos (i b) & =\frac{1}{2}\left(e^{i(i b)}+e^{-i(i b)}\right) \\
& =\frac{1}{2}\left(e^{-b}+e^{b}\right) \\
& \equiv \cosh (b)
\end{aligned}
$$

Hyperbolic cosine

So: $\sin (a+i b)=\sin (a) \cosh (b)+i \cos (a) \sinh (b)$
For large $b, \sinh b, \cosh b \rightarrow e^{b}$
no problem satisfying $n_{i} \sin \theta_{i}=n_{t} \sin \theta_{t}$

Want $n_{i} \sin \theta_{i}=n_{t} \sin \theta_{t}$ with complex $\theta_{t}$

Assume $n_{i} \sin \theta_{i}$ and $n_{t}$ real:
Then $\operatorname{Im}\left[n_{t} \sin \theta_{t}\right]=n_{t} \cos (a) \sinh (b)=0$
Don't want $b=0$, so take $a=\frac{\pi}{2}$
Gives $\sin \theta_{t}=\cosh b$

Snell's law becomes

$$
n_{i} \sin \theta_{i}=n_{t} \cosh b
$$

Note $\cosh b>1$, require $\sin \theta_{i}>n_{t} / n_{i}-\sin \theta_{c}$

Example: What is the complex transmission angle for light propagating from glass to air with an angle of incidence of $60^{\circ}$ ?

If $\theta_{i}=60^{\circ}$ then $b=\cosh ^{-1}\left[1.5 \sin \left(60^{\circ}\right)\right]=0.755$
So $\theta_{t}=\frac{\pi}{2}+0.755 i$
Just need a good calculator!

Question: What are the units of $b$ ?

What happens to Fresnel coefficients?
Need $\cos \theta_{t}=\cos \left(\frac{\pi}{2}+i b\right)$

$$
=-i \sinh (b)
$$

pure imaginary

$$
\text { So } \begin{aligned}
r_{\perp} & =\frac{n_{i} \cos \theta_{i}-n_{t} \cos \theta_{t}}{n_{i} \cos \theta_{i}+n_{t} \cos \theta_{t}} \\
& \rightarrow \frac{n_{i} \cos \theta_{i}-i n_{t} \sinh b}{n_{i} \cos \theta_{i}+i n_{t} \sinh b} \quad \text { complex! }
\end{aligned}
$$

Still have $E_{r 0}=r E_{i 0}$ complex $r$ : phase shift between $\mathbf{E}_{\text {inc }}$ and $\mathbf{E}_{\text {refl }}$ Both $r_{\perp}$ and $r_{\|}$have form

$$
\begin{aligned}
& r=\frac{u+i v}{u-i v} \\
& r_{\perp}: u=n_{i} \cos \theta_{i} \text { and } v=n_{t} \sinh b \\
& r_{\|}: u=n_{t} \cos \theta_{i} \text { and } v=n_{i} \sinh b
\end{aligned}
$$

If $z=u+i v$, then $r=z / z^{*}$
So $|r|=\frac{|z|}{\left|z^{*}\right|}=1$ : all light reflected

Write $z=|z| e^{i \phi}$, then $r=e^{2 i \phi}$
Reflection phase shift: $\quad 2 \phi=2 \tan ^{-1}\left(\frac{v}{u}\right)$

To calculate numerically, just use good calculator (or computer program):

Evaluate

$$
r_{\perp}=\frac{n_{i} \cos \theta_{i}-n_{t} \cos \theta_{t}}{n_{i} \cos \theta_{i}+n_{t} \cos \theta_{t}}
$$

for $\theta_{t}=\sin ^{-1}\left(\frac{n_{i}}{n_{t}} \sin \theta_{i}\right)$
Let computer deal with complex math

Plot for glass $\rightarrow$ air:


Use TIR to make good mirror be aware of phase shifts

For TIR, $R=|r|^{2}=1$ so all power reflected

But also have

$$
\begin{aligned}
t_{\perp} & =\frac{2 n_{i} \cos \theta_{i}}{n_{i} \cos \theta_{i}+n_{t} \cos \theta_{t}} \\
t_{\|} & =\frac{2 n_{i} \cos \theta_{t}}{n_{i} \cos \theta_{t}+n_{t} \cos \theta_{i}}
\end{aligned}
$$

do not equal zero!?
Have a transmitted field $(t \neq 0)$ but doesn't carry any energy ( $R=1$ )

Question: How might this contradiction be resolved?

To see:
Transmitted wave: $\mathbf{E}_{t}=\mathbf{E}_{t 0} e^{i\left(\mathbf{k}_{t} \cdot \mathbf{r}-\omega t\right)}$
with $\mathbf{k}_{t}=\left|k_{t}\right|\left(\sin \theta_{t} \widehat{\mathbf{x}}+\cos \theta_{t} \widehat{\mathbf{z}}\right)$

For TIR, $\theta_{t}=\frac{\pi}{2}+b$ $\sin \theta_{t} \rightarrow \cosh b$ $\cos \theta_{t} \rightarrow i \sinh b$

So $\mathbf{k}_{t} \rightarrow k_{t}(\cosh b \widehat{\mathbf{x}}+i \sinh b \widehat{\mathbf{z}})$


## Transmitted field

$$
\begin{aligned}
\mathbf{E}_{t} & \rightarrow \mathbf{E}_{t 0} e^{i\left[k_{t}(x \cosh b+i z \sinh b)-\omega t\right]} \\
& =\mathbf{E}_{t 0} e^{-k_{t} z \sinh b} e^{i\left(k_{t} x \cosh b-\omega t\right)}
\end{aligned}
$$

Wave propagates in $x$ direction
Decays exponentially in $z$ direction

- Carries no energy away from surface

Called evanenscent wave
(Not same as exponential decay from absorption!)

Evanescent wave can be observed
Single surface:


Introduce second surface:


Transmitted wave appears!

Get transmission from tail of evanescent wave
For gap $d$, amplitude of transmitted wave $\approx e^{-k_{t} d \sinh b}$

- reflection $\rightarrow 0$ smoothly as $d \rightarrow 0$

Called frustrated total internal reflection

Completely analogous to tunneling in QM

Still hope $T=0$ for plain TIR

Should have defined $T=\operatorname{Re}\left[\frac{n_{t} \cos \theta_{t}}{n_{i} \cos \theta_{i}}\right]|t|^{2}$
In TIR, $\cos \theta_{t}=-i \sinh b$ real part $=0$

So $T=0$, as needed

Raises question: what if $n_{i}$ or $n_{t}$ is complex?

Reflection from metals (Hecht 4.8)
Saw previously that in absorbing medium

$$
n \rightarrow n+i \frac{\alpha}{2 k_{0}}
$$

$\alpha=$ absorption coefficient

Get $\mathbf{E}=\mathbf{E}_{0} e^{i\left(n \mathbf{k}_{0} \cdot \mathbf{r}-\omega t\right)}$

$$
\rightarrow \mathbf{E}_{0} e^{-\alpha \widehat{\mathbf{k}} \cdot \mathbf{r} / 2} e^{i(n \mathbf{k} \cdot \mathbf{r}-\omega t)}
$$

and $I \propto\left|E_{0}\right|^{2} \propto e^{-\alpha \hat{\mathbf{k}} \cdot \mathbf{r}}$
Wave attenuates as it propagates

Question: How could you distinguish an evanescent wave from TIR and a plane wave exponentially decaying due to absorption? (Supposing no knowledge about the media.)

Normally don't want optical material to absorb Important exception: mirrors light doesn't penetrate medium
not much loss

How to apply Fresnel relations?
Typically $n_{i}, \theta_{i}$ real
$n_{t}$ complex

Same equations apply

- Snell's law: $\sin \theta_{t}=\frac{n_{i}}{n_{t}} \sin \theta_{i}$ (so $\theta_{t}$ complex)
- Use $\cos \theta_{t}=\sqrt{1-\sin ^{2} \theta_{t}}$ as before
- Plug into equations for $r_{\perp}, r_{\|}$ Get complex result

Hard to do by hand; easy on computer

Consider a very good absorber $\alpha \rightarrow \infty$

Then $n_{i} \sin \theta_{i}=\left(n_{t}+i \frac{\alpha}{2 k_{0}}\right) \sin \theta_{t}$
means $\theta_{t} \rightarrow 0$

$$
\text { and } \begin{aligned}
r_{\perp} & =\frac{n_{i} \cos \theta_{i}-n_{t} \cos \theta_{t}}{n_{i} \cos \theta_{i}+n_{t} \cos \theta_{t}} \\
& \rightarrow \frac{n_{i} \cos \theta_{i}-n_{t}-i \alpha / 2 k_{0}}{n_{i} \cos \theta_{i}+n_{t}+i \alpha / 2 k_{0}} \\
& \rightarrow-1
\end{aligned}
$$

Similarly $r_{\|} \rightarrow 1$

So perfect absorber $=$ perfect reflector

To make a true absorber:
need moderate $\alpha+$ porous surface
reflected waves bounce many times
Example: soot ( = carbon dust)

Use high- $\alpha$ material for mirror

Highest $\alpha$ : metals
Homework problem 5 from assignment 1:
In conductive medium get current $\mathbf{J}=\sigma \mathbf{E}$ $\sigma=$ conductivity

$$
\text { Got } k=\sqrt{\epsilon \mu_{0} \omega^{2}+i \omega \mu_{0} \sigma}
$$

Rewrite

$$
k=k_{0} \sqrt{\frac{\epsilon}{\epsilon_{0}}+i \frac{\sigma}{\epsilon_{0} \omega}}
$$

Good conductor: silver

$$
\sigma \approx 6 \times 10^{7}(\Omega \mathrm{~m})^{-1} \quad(\text { at } \mathrm{dc})
$$

If $\lambda=500 \mathrm{~nm}$ and $\epsilon \approx \epsilon_{0}$

$$
\frac{\sigma}{\epsilon_{0} \omega} \approx 2000
$$

So $k \approx k_{0} \sqrt{2000 i}$

$$
\approx 45 k_{0} \frac{1+i}{\sqrt{2}}=30 k_{0}(1+i)
$$

Then expect $n \approx \alpha / 2 k_{0} \approx 30$

Actually, not that good at optical freqs
find $n=0.3$ and $\alpha / 2 k_{0}=4$
Still get $R \approx 0.95$ across visible

## Practical notes

- Typical metals:

Silver: $R \approx 0.95$ in visible, NIR

- oxidizes quickly in air

Gold: $R \approx 0.95$ in NIR

- doesn't oxidize

Aluminum: $R \approx 0.85$ in visible, NIR

- oxidizes but easy to protect ( SiO )
- Metals don't have Brewster angle typically dip in $R_{\|}$, but not to zero
- Wave penetrates fraction of $\lambda$ typical 50-100 nm

Get better mirrors using dielectric layers

- discuss theory later
- can get $R=0.99$ easily, 0.99999 with effort
- more expensive than metal

Could use TIR:


Drawbacks:

- Reflection losses from first surface
- Beam displacement inconvenient
- Limited range of $\theta_{i}$

Usually use when displacement desired

Summary

- Get TIR with internal incidence, $\theta_{i}>\theta_{c}$
- Perfect reflection, with phase shift
- Evanescant wave at surface
- For TIR or absorbing media,

Fresnel equations are complex

- Highly absorbing medium $\rightarrow$ good mirror

