Today shift gears, start applying theory want to manipulate light

Study how lenses, mirrors, etc. work and how they work together in a system

For next five lectures, focus on ray optics
= "particle" theory of light
Simpler approximation to wave theory
Outline:

- Ray optics
- Ideal imaging surfaces
- Paraxial optics
- Thin lenses

Next time: finish lenses, cover mirrors, prisms, apertures

Ray Optics

Formally, ray $=$ vector normal to wave front draw as line through space

Plane wave: ray $=\widehat{\mathbf{k}}$

Spherical wave:
rays point into or out of source

3

Sometimes use density of rays to indicate intensity

Dipole radiation:

Wave defined by wavefronts equivalently by rays

In free space, rays are straight
At boundaries, Snell's law, law of reflection describe what $\widehat{\mathbf{k}}$ does
$=$ describe what rays do

Ray optics: interpret rays as trajectories of particles

Leads to incorrect predictions:

- No interference
- Gets trajectories wrong

Example: absorbing sheet with small hole

Ray optics:
predict particles entering hole continue undisturbed
other particles blocked
Expect thin pencil of light transmitted

Wave optics:
don't (yet) know how to predict
Will find transmitted wave diverges: diffraction

Divergence important for $d \gtrsim \frac{a^{2}}{\lambda}$
$a=$ hole size $\quad d=$ propagation distance

Generally, ray optics valid when
(a) no (explicit) interference
(b) feature size $>(\text { propagation distance } \times \lambda)^{1 / 2}$

For $\lambda \approx 1 \mu \mathrm{~m}, d \approx 1 \mathrm{~m}$, need $a>1 \mathrm{~mm}$
Rule of thumb:
ray optics fine for elements larger than 1 mm
(element $=$ lens, mirror, aperture, etc.)
Question: A laser beam is often considered as a pencil of rays. If a beam has diameter 1 cm and wavelength $1 \mu \mathrm{~m}$, over what propagation distance is ray optics valid?

Lenses (Hecht 5.2)

For now, assume ray optics is valid
Two main applications:

- Image formation: have an object, want to take its picture
- Illumination: have a source, want to direct light to target

Both require light directed from place to place

Basic tools: lenses, mirrors, prisms
Start with lenses

Lens $=$ curved refracting surface or surfaces used to change center of spherical wave

Each point on object emits spherical wave Lens makes wave converge to new point

Ray optics: lens focuses set of rays to a point

Point $\rightarrow \infty$: collimate rays $=$ make parallel

What shape should surface have?
Consider single surface $n_{1} \rightarrow n_{2}$

Surface defined by points $y=f(x)$ want to determine right function f

Want all rays from A to reach B
Fermat's principle:
all paths from A to B have same \mathcal{S}

Path going through (x, y) :

$$
\mathcal{S}=n_{1} \sqrt{(x+a)^{2}+y^{2}}+n_{2} \sqrt{(x-b)^{2}+y^{2}}
$$

Know for point (0,0): $\mathcal{S}=n_{1} a+n_{2} b$

If \mathcal{S} constant, then

$$
n_{1} \sqrt{(x+a)^{2}+y^{2}}+n_{2} \sqrt{(x-b)^{2}+y^{2}}=n_{1} a+n_{2} b
$$

In principle, solve for $y=f(x)$

Example: $b \rightarrow \infty, n_{2}>n_{1}$

$$
\text { get } y=\frac{1}{n_{1}} \sqrt{2 a n_{1}\left(n_{2}-n_{1}\right) x+\left(n_{2}^{2}-n_{1}^{2}\right) x^{2}}
$$

Can show this is equation for hyperbola (hyperboloid in 3D)

If you don't want image in medium, need second surface

Generally use sphere centered at B : doesn't deflect rays

This technique gives "ideal" lens all rays hitting lens reach B

Unfortunately, ideal lens hard to construct
Require surface accuracy $\sim \lambda / 4$, otherwise waves don't add constructively

Also, limited to particular points A and B
Usually have extended object:
many source and image points

Can make one kind of surface precisely: sphere

Strategy: approximate ideal surface by sphere

OK if y small enough
(Ideal lens usually called aspheric)

Try to design spherical lens

Find R such that \mathcal{S} from A to B constant for small y
($s_{o}=$ "object distance;" $s_{i}=$ "image distance")

Surface is sphere centered at $(R, 0)$

$$
\begin{aligned}
& y^{2}+(x-R)^{2}=R^{2} \\
& y^{2}=2 x R-x^{2}
\end{aligned}
$$

So $\mathcal{S}=n_{1} \sqrt{\left(x+s_{o}\right)^{2}+y^{2}}+n_{2} \sqrt{\left(x-s_{i}\right)^{2}+y^{2}}$

$$
\begin{aligned}
& =n_{1} \sqrt{\left(x+s_{o}\right)^{2}+2 x R-x^{2}} \\
& \quad \quad+n_{2} \sqrt{\left(x-s_{i}\right)^{2}+2 x R-x^{2}} \\
& \quad=n_{1} \sqrt{s_{o}^{2}+2 x\left(R+s_{o}\right)}+n_{2} \sqrt{s_{i}^{2}+2 x\left(R-s_{i}\right)}
\end{aligned}
$$

Want \mathcal{S} constant: $\frac{d \mathcal{S}}{d x}=0$

$$
\frac{d \mathcal{S}}{d x}=\frac{n_{1}\left(R+s_{o}\right)}{\sqrt{s_{o}^{2}+2 x\left(R+s_{o}\right)}}+\frac{n_{2}\left(R-s_{i}\right)}{\sqrt{s_{i}^{2}+2 x\left(R-s_{i}\right)}}
$$

No solution in general, but we want small y \Rightarrow very small x

$$
\left(\text { if } y \ll R \text { then } x \ll \frac{y^{2}}{2 R}\right)
$$

So set $x=0$:

$$
\left.\frac{d \mathcal{S}}{d x}\right|_{x=0}=n_{1} \frac{R+s_{o}}{s_{o}}+n_{2} \frac{R-s_{i}}{s_{i}}
$$

So want

$$
\begin{aligned}
0 & =n_{1} \frac{R+s_{o}}{s_{o}}+n_{2} \frac{R-s_{i}}{s_{i}} \\
& =n_{1}\left(\frac{R}{s_{o}}+1\right)+n_{2}\left(\frac{R}{s_{i}}-1\right) \\
& =\frac{n_{1}}{s_{o}}+\frac{n_{1}}{R}+\frac{n_{2}}{s_{i}}-\frac{n_{2}}{R}
\end{aligned}
$$

or

$$
\frac{n_{1}}{s_{o}}+\frac{n_{2}}{s_{i}}=\frac{n_{2}-n_{1}}{R}
$$

Relates R, s_{o} and s_{i} : know two, solve for other

Spherical lens works for rays with $y \ll R$
but $R=\frac{n_{2}-n_{1}}{\left(\frac{n_{1}}{s_{o}}+\frac{n_{2}}{s_{i}}\right)}$
so $y \ll \frac{\left(n_{2}-n_{1}\right) s_{o} s_{i}}{n_{1} s_{i}+n_{2} s_{o}} \approx \frac{s_{o} s_{i}}{s_{o}+s_{i}} \approx \min \left(s_{o}, s_{i}\right)$
Unless $n_{1} \approx n_{2}$, need $y \ll s_{o}$ and $y \ll s_{i}$

$$
\text { Have } y_{1} / s_{o} \approx \theta_{1} \text { and } y_{1} / s_{i} \approx \theta_{2}
$$

Best statement:
spherical lens works for rays with $\theta \ll 1$
Called paraxial rays

Lens formula equivalent to approximation $\sin \theta \approx \theta$ in Snell's law

Treatment of lenses with paraxial rays:
Gaussian, paraxial, or first-order optics

Deviations from paraxial give aberrations
$=$ imaging errors

Conventions and Definitions

(Hecht Table 5.1)

- Point $A=$ object point

Point $B=$ image point
Point V = vertex

- For geometry shown, s_{o}, s_{i}, R all positive

Thin Lenses (Hecht 5.2.3)
Don't usually want image in medium: need two surfaces

Simplest case: thickness of lens $t \ll R_{1}, R_{2}, s_{o}, s_{i}$
Neglect

Solve one surface at a time

Assume incident medium $=$ air
Then $\frac{1}{s_{o}}+\frac{n}{s_{i}^{\prime}}=\frac{(n-1)}{R_{1}}$

Second surface:

Object of second surface $=$ image from first
$=B^{\prime}$: to right of lens
OK: convention says $s_{o}^{\prime}=-s_{i}^{\prime}$ called "virtual object"
(Also note: as drawn, $R_{2}<0$)

So, have

$$
\begin{aligned}
\frac{n}{s_{o}^{\prime}}+\frac{1}{s_{i}} & =\frac{1-n}{R_{2}} \\
-\frac{n}{s_{i}^{\prime}}+\frac{1}{s_{i}} & =\frac{1-n}{R_{2}} \\
-\left(\frac{n-1}{R_{1}}-\frac{1}{s_{o}}\right)+\frac{1}{s_{i}} & =\frac{1-n}{R_{2}}
\end{aligned}
$$

Gives

$$
\frac{1}{s_{o}}+\frac{1}{s_{i}}=(n-1)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)
$$

Define $\frac{1}{f}=(n-1)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$
$f=$ focal length
Thin lens equation:

$$
\frac{1}{s_{o}}+\frac{1}{s_{i}}=\frac{1}{f}
$$

Question: Where in this derivation did we use the assumption that the lens is thin?

In picture: f is image distance produced by collimated input

or object distance required to make collimated rays
Focal point $=$ where collimated rays focused (on either side)

Lens usually specified by f

Thin Lens Behavior

Thin lens equation valid for s_{o}, s_{i}, f either positive or negative

- Illustrate some cases
$f>0, s_{o}=\infty$: then $s_{i}=f$

$$
f>0, s_{o}>f: \text { then } s_{i}>f
$$

$f>0, s_{o}=f:$ then $s_{i}=\infty$

$$
f>0, s_{o}<f: \text { then } s_{i}<0 \text { "virtual image" }
$$

$f>0, s_{o}<0$: then $s_{i}<f$ "virtual object"

If $f<0$, at least one of s_{o}, s_{i} is negative

$$
f<0, s_{o}>0 \text { : then } f<s_{i}<0
$$

$s_{o}<f<0$: then $s_{i}<0$

Demo!

Question: What happens if we put a lens right where the input rays are focused?

Can see that signs are tricky

- Real-life rays not left to right
- Gets worse with mirrors!

How I keep track:
light travels from upstream to downstream

- Object real if it is upstream of lens: $s_{o}>0$
- Object virtual if it is downstream: $s_{o}<0$
- Image real if it is downstream: $s_{i}>0$
- Image virtual if it is upstream: $s_{i}<0$

Summary:

- Ray $=$ normal to wave front
- Ray optics: particles follow rays
- Ray optics accurate for large objects, short distances
- Fermat's principle gives ideal lenses
- Spherical lenses work in paraxial approximation
- Thin lens equation and sign convention important

