1. Classical Model for Nonlinear Response: The nonlinear optical response of a medium can be understood in terms of a simple classical model. Suppose a medium contains classical particle-like electrons that move in a 1-dimensional potential

$$
V(x)=V_{0}\left(\frac{1}{2} \frac{x^{2}}{a^{2}}+\frac{1}{3} \frac{x^{3}}{a^{3}}\right)
$$

where V_{0} is a characteristic atomic energy scale and a is a characteristic atomic length scale. Assuming each electron has an electric dipole moment $-e x$, the macroscopic polarization of the medium will be given by $P=-e x N$ for electron density N.
(a) Write out the equation of motion for an electron of mass m in this potential which is also driven by an electric field $E(t)=E_{0} \exp (i \omega t)$. What is the resonant frequency ω_{0} in the limit of small excursion x ?
(b) Assuming a steady-state solution of the form

$$
x(t)=x_{1} e^{i \omega t}+x_{2} e^{2 i \omega t}+x_{3} e^{3 i \omega t}+\ldots
$$

solve for the amplitudes of the first three terms x_{1}, x_{2}, and x_{3}.
(c) For most optical materials, the lowest resonant frequencies are in the ultraviolet, so we can take $\omega \ll \omega_{0}$. Evaluate the amplitudes in this limit, and find expressions for the linear susceptability χ and the second and third order nonlinear coefficients, defined by

$$
P(t)=\epsilon_{0} \chi E+2 d E^{2}+4 \chi^{(3)} E^{3}
$$

Note that for $e E_{0} \ll V_{0} / a$, the terms in the expression for P decrease in magnitude as their order increases.
2. Nearly Degenerate Three-Wave Mixing: The fundamental equation for second-order nonlinear response is

$$
P(t)=2 d E(t)^{2}
$$

for real electric field E and polarization P. (Assume here that the fields can be treated as scalars.) In class, we showed that for a single applied field oscillating at frequency ω, the complex amplitude of the polarization component at 2ω is

$$
P(2 \omega)=d E(\omega)^{2},
$$

but for a applied field containing components at distinct frequencies ω_{1} and ω_{2}, the polarization component at $\omega_{1}+\omega_{2}$ is

$$
P\left(\omega_{1}+\omega_{2}\right)=2 d E\left(\omega_{1}\right) E\left(\omega_{2}\right) .
$$

Now suppose that the frequencies ω_{1} and ω_{2} are nearly identical, with $\omega_{1}=\omega_{2}+\epsilon$. Then on time scales $t \ll 1 / \epsilon$, the frequencies $2 \omega_{1}, 2 \omega_{2}$, and $\omega_{1}+\omega_{2}$ cannot be distinguished. Show that the net polarization at these frequencies satisfies $P=d E^{2}$ for $E=E\left(\omega_{1}\right)+E\left(\omega_{2}\right)$, just as would be obtained if $\omega_{1}=\omega_{2}$. This should illustrate the continuity between the degenerate and non-degenerate cases.
3. SHG in Te: Design a second-harmonic generation experiment in Te using an input at $\lambda=10.6 \mu \mathrm{~m}$. Te is a uniaxial crystal with indices of refraction

λ	n_{o}	n_{e}
$5.3 \mu \mathrm{~m}$	4.856	6.307
$10.6 \mu \mathrm{~m}$	4.794	6.243

It has symmetry class 32 , which gives three non-zero second-order coefficients, $d_{11}=$ $-d_{12}=-d_{26}=5.7 \times 10^{-21} \mathrm{C} / \mathrm{V}^{2}$.

Find the phase-matching angle and decide on the proper beam polarization and crystal orientation for maximum power output at $5.3 \mu \mathrm{~m}$. Find the effective value of the nonlinear coupling parameter, d^{\prime} (including angle effects).
4. Properties of $\mathbf{B B O}$: Look up the properties of the nonlinear crystal β $\mathrm{BaB}_{2} \mathrm{O}_{4}$, commonly called BBO . Find the range of wavelengths over which it is transparent, whether it is uniaxial or biaxial, and values for as many of its nonzero second-order coefficients as you can find (including crystal symmetry effects). Also find its various indices of refraction at 1064 nm and 532 nm . Cite the sources you use.

822 students only:

5. Electro-optic and Nonlinear Optic Coefficients: In Section 19.2-B, Saleh and Teich explain the relationship between the electro-optic and second-order nonlinear optical coefficients, for scalar (rather than vector) fields. Show that in the vector case, the relationship is

$$
r_{i j k}=-\frac{4 \epsilon_{0} d_{i j k}}{\epsilon_{i i} \epsilon_{j j}}
$$

where $\epsilon_{i j}$ is the dielectric tensor. Problem 19.6-3 in the text has a hint you may use, but I'd like you to derive the relation given there.

