
Phys 532 Assignment 5

Due February 20

1. Rate Equations: Use the rate equations to calculate the population inversion $\Delta N_0 = N_2 - (g_2/g_1)N_1$ for the four-level system shown. The only transition being driven is the $0 \leftrightarrow 3$ pump transition, and you can assume that the pump rate is low enough to neglect depletion of state 0. Pumping can therefore be characterized by the total rate R (units of (atoms/s)/m³), as shown. Feel free to simplify expressions by using the total lifetimes τ_i for each state. For instance,

$$\frac{1}{\tau_2} = \frac{1}{\tau_{21}} + \frac{1}{\tau_{20}}$$

2. Gain Coefficient: Suppose that the system of problem 1 describes a solid state laser medium with the following data:

$\lambda_{03} = 500 \text{ nm}$	$\lambda_{12} = 800 \text{ nm}$	$\Delta \nu_{03} = 5 \times 10^{13} \text{ Hz}$
$\Delta\nu_{12}=10^{11}~{\rm Hz}$	$\tau_{30} = \tau_{32} = 100 \text{ ns}$	$\tau_{31} = 2 \text{ ms}$
$\tau_{21} = 1 \text{ ms}$	$\tau_{20} = 1 \text{ ms}$	$\tau_{10} = 25 \text{ ns}$
$g_0 = g_1 = 1$	$g_2 = 2$	$g_3 = 4$

Take the $0 \leftrightarrow 3$ and $1 \leftrightarrow 2$ transitions to be radiative, so that τ_{ij} gives the appropriate spontaneous emission lifetime. The medium consists of ions in a 1-cm long crystal, where the total density of ions is $N_a = 10^{19}$ cm⁻³ and the index of refraction of the host crystal is n = 1.7. What pumping intensity on the $0 \leftrightarrow 3$ transition is required to achieve a total gain through the crystal of 2.5? Neglect any saturation effects.

3. Saturation Intensity: In the system of problem 1, take $\tau_{20} = \tau_{31} = \infty$ and calculate the saturation intensity for the $2 \rightarrow 1$ transition. Recall that saturation intensity I_s is defined by

$$\gamma(\nu) = \frac{\gamma_0(\nu)}{1 + I/I_s}$$

for gain coefficient γ in the presence of radiation with intensity I.

4. Saturation Intensity for Sodium: As in problem 4 from assignment 4, sodium atoms have a doublet of excited states labeled $3p_{1/2}$ and $3p_{3/2}$ that are connected to the $3s_{1/2}$ ground state by transitions at 589.6 nm and 589.0 nm respectively. The excited states have a radiative lifetime of 16 ns and degeneracies of 2 ($3p_{1/2}$) and 4 ($3p_{3/2}$), while the ground state has degeneracy 2. At a temperature of 400 K, the vapor density is low enough that collisions are negligible. Calculate the saturation intensity at $\nu = \nu_0$ for each of the two transitions.

822 students only:

5. Saturated Gain in a Inhomogeneous Medium: Read Saleh and Teich section 13.3C. As in problem 3 from assignment 4, consider a cell of length L containing a gas of atoms with density N_a , and with a transition at frequency ν_0 with spontaneous lifetime t_s and homogeneous linewidth $\Delta \nu$. The cell is placed in a spatially varying magnetic field B with $B(z) = \beta z$ for z = 0 at the center of the cell. The magnetic field shifts the frequency of the transition according to $\nu'_0 = \nu_0 + \mu B$, for some constant μ . Take the lower level to be the ground state, and assume no pumping mechanism is present. The levels have equal degeneracies. Determine the inhomogeneous absorption coefficient $\bar{\alpha}(\nu) = -\bar{\gamma}(\nu)$ for light of intensity I, in the limit $\Delta \nu \ll \mu \beta L$. Assume sufficient light is present to saturate the transition, but not greatly more than that.